點解以下的問題?

2008-06-21 9:10 pm
lim (a^x -1 )/x
x->0

回答 (3)

2008-06-22 2:49 am
✔ 最佳答案
(a^x-1)/x=[exp(ln(a^x))-1]/x
=[exp(x ln a)-1]/x
={[1+x ln a+(x ln a)²/2!+(x ln a)³/3!+...]-1}/x
=lna+x(ln a)²/2!+x²(ln a)³/3!+...

=> lim[(a^x-1)/x]=lim[ln a+x(ln a)²/2!+x²(ln a)³/3!+...]=ln a
   x→0     x→0
2008-06-22 12:33 am
By L'Hopital Rule,
lim (ax -1 )/x
x->0
=lim (axlnx)/1
x->0
=lim (axlnx)
=1
x->0
2008-06-21 9:30 pm
lim(a^x-1)/x
當x close to 0
=0/0

即係冇lim

2008-06-21 17:28:05 補充:
let a為任何數字
y = a^x
ln(y) = x*ln(a)
x = ln(y)/ln(a)
dx/dy = [1/y*ln(a) - 0*ln(y)]/[ln(a)]^2
dx/dy = 1/y*1/ln(a)
dy/dx = y*ln(a)
dy/dx = a^x*ln(a) (y = a^x)

when y = e^x
dy/dx = e^x* ln(e)
dy/dx = e^x (ln(e) = 1)

2008-06-21 21:20:38 補充:
修正:a>0

-----------------------------------------------------------
nychan63 好勁呀~
我知道會係ln(a)
不過之前一直都沒想到可以咁樣解~


收錄日期: 2021-04-15 15:05:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080621000051KK01116

檢視 Wayback Machine 備份