✔ 最佳答案
It can be shown that if
x²
F(x)=∫√(t^4+x³)dt (t^4 instead of t² in the first integral)
0
then
x²
dF(x)/dx=√(t^8+x³)dt+∫{3x²/[2√(t^4+x³)]}dt (the second)
0
2008-06-26 03:44:17 補充:
It can be shown that if
x²
F(x)=∫√(t^4+x³)dt (t^4 instead of t² in the first integral)
0
then
x²
dF(x)/dx=2x√(t^8+x³)+∫{3x²/[2√(t^4+x³)]}dt (exactly the second integral)
0
頭先打錯。
2008-06-26 04:08:58 補充:
It can be shown that if
x²
F(x)=∫√(t^4+x³)dt (t^4 instead of t² in the first integral)
0
then
x²
dF(x)/dx=2x√(x^8+x³)+∫{3x²/[2√(t^4+x³)]}dt (exactly the second integral)
0
又打錯。
2008-06-26 22:24:04 補充:
x²
Let F(x)= ∫ √(t^4+x³)dt (t^4 instead of t²)
0
f(x,t)=√(t^4+x³)
a(x)=0
b(x)=x²
By Leibniz integral rule:
b(x) b(x)
(d/dx) ∫ f(x,t)dt=f[x,b(x)](∂/∂x)b(x)-f[x,a(x)](∂/∂x)a(x)+ ∫ (∂/∂x)f(x,t)dt
a(x) a(x)
we have
x²
(d/dx)F(x)=f(x, x²)(∂/∂x)(x²)-f(x,0)(∂/∂x)(0)+ ∫ (∂/∂x)[√(t^4+x³)]dt
0
x²
=√[(x²)^4+x³](2x)-0+ ∫ [1/√(t^4+x³)](3x²)dt
0
x²
=2x√(x^8+x³)+ ∫ {3x²/[2√(t^4+x³)]}dt
0