✔ 最佳答案
Note: I have used x instead of theta to represent the angle for easy typing.
Q.1
Angle EBD = angle BDC - angle BED = 2x - (90 - x ) = (3x - 90). (Exterior angle of triangle.)
Q.2
Let AB = m.
For triangle BAE, applying sine rule, we get
m/sin[180 -(90-x)] = a/sin(angle ABE). Angle ABE = 90 - x - x = (90 -2x) (Exterior angle of triangle).
Therefore, m/sin(90+x) = a/sin(90 -2x). That is m/cosx = a/cos2x.........(1)
For triangle ABD, applying sine rule, we get
m/sin(180-2x) = (a+b)/sin(angleABD). Angle ABD = 2x -x = x (Exterior angle of triangle).
That is m/sin(180 -2x) = (a+b)/sinx
Or m/sin2x = (a+b)/sinx..................................(2)
(1) /(2) we get sin2x/cosx = asinx/[(a+b)cos2x]
2sinx = asinx/[(a+b)cos2x]
Therefore, cos2x = a/[2(a+b)].