A.Maths Trigonometry

2008-06-08 9:45 pm
Please answer the following question

圖片參考:http://i192.photobucket.com/albums/z285/gogoalgreenhope/DSC00042-1-1.jpg

回答 (2)

2008-06-08 10:13 pm
✔ 最佳答案
LHS=(cos²x-sinxcosx+tanx)/(cos²x+sinxcosx-tanx)
=(cos³x-sinxcos²x+sinx)/(cos³x+sinxcos²x-sinx)
=[cos³x-sinx(1-sin²x)+sinx]/[cos³x+sinx(1-sin²x)-sinx]
=(cos³x+sin³x)/(cos³x-sin³x)
=(1+tan³x)/(1-tan³x) (Divide cos³x on both sides)
=RHS
2008-06-08 10:19 pm
LHS

=[(cosθ)^2-sinθcosθ+tanθ)]/[(cosθ)^2+sinθcosθ-tanθ]

=[(cosθ)^3-sinθcos^2θ+sinθ)]/[(cosθ)^3+sinθcos^2θ-sinθ]

=[(cosθ)^3-sinθ(cos^2θ-1)]/[(cosθ)^3+sinθ(cos^2θ-1)]

=[(cosθ)^3+sin^3θ]/[(cosθ)^3-sin^3θ]

=[1+(tanθ)^3]/[1-(tanθ)^3]

=RHS


收錄日期: 2021-04-23 20:33:56
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080608000051KK01090

檢視 Wayback Machine 備份