✔ 最佳答案
using MI
when n=1
LHS=1/2
RHS=sqrt(1/2)
LHS<=RHS
Assume that when n=k, P(k) is true
[1*3*5*...*(2k-1)] / [(2*4*6*...*(2k)] <= 1/sqrt(k+1)
when n=k+1
LHS
=[1*3*5*...*(2k-1)] / [(2*4*6*...*(2n)]*[(2k+1)/(2k+2)]
<= 1/sqrt(k+1) *[(2k+1)/(2k+2)]
Consider
(k+2)(2k+1)^2-(k+1)(2k+2)^2
=(k+2)(4k^2+4k+1)-4(k^3+3k^2+3k+1)
=4k^2+k+8k^2+8k+2-12k^2-12k-4
=-(3k+2)
<0
So
sqrt(k+2)(2k+1)
2008-06-07 16:47:33 補充:
<
2008-06-07 21:13:07 補充:
原來我COPY少了東西﹐這個是yahoo的問題
So
sqrt(k+2)(2k+1) < sqrt(k+1)(2k+2)
1/sqrt(k+2) > [1/sqrt(k+1)][(2k+1)/(2k+2)]
THAT IS
[1*3*5*...*(2k-1)] / [(2*4*6*...*(2n)]*[(2k+1)/(2k+2)]
<=1/sqrt(k+1) *[(2k+1)/(2k+2)]
<=1/sqrt(k+2)
when n=k+1 P(n) is true
So by MI, for all positive integer n, P(n) is true
2008-06-07 21:13:40 補充:
the answer by the next one is wrong