integration

2008-06-04 8:09 am
y is a function of x
y' denotes the first derivative of y
y'' denotes the second derivative of y

find y if
y'' + y' + 1 =0
更新1:

I am very busy these days. I will read the answers soon

回答 (3)

2008-06-13 11:50 am
✔ 最佳答案
Find y if y'' + y' + 1 = 0 by integration.

y'' + y' + 1 = 0
y'' + y' = - 1
∫(y'' + y') dx = ∫- 1 dx
∫y'' dx + ∫y' dx = ∫- 1 dx
y' + y = - x + C
(e^x)(y' + y) = (e^x)(- x + C)
(e^x)y' + (e^x)y = - xe^x + Ce^x
(ye^x)' = - xe^x + Ce^x
ye^x = ∫(- xe^x + Ce^x) dx
ye^x = ∫- xe^x dx + ∫Ce^x dx
ye^x = ∫- x d(e^x) + Ce^x + C_0
ye^x = - xe^x - ∫e^x d(- x) + Ce^x + C_0
ye^x = - xe^x + ∫e^x dx + Ce^x + C_0
ye^x = - xe^x + e^x + Ce^x + C_1
ye^x = - xe^x + (C_2)e^x + C_1
y = - x + (C_1)e^(- x) + C_2
參考: my maths knowledge
2008-06-06 9:26 am
From the given equation, you may let y = e^(rx) for some numbers r.
(Since only exponential function will be possible to arrive such an equation)

Then by succesive differentiation and substitution, you get r^2 + r + 1 = 0
so r = - 1/2 + ((root 3) / 2)i or - 1/2 - ((root 3) / 2)i

You can see r is a complex number, so use the euler's formula
e^(ix) = cosx + isinx, then u'll get the function u want
2008-06-04 9:22 am
參考: me


收錄日期: 2021-04-19 01:16:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080604000051KK00028

檢視 Wayback Machine 備份