✔ 最佳答案
Find y if y'' + y' + 1 = 0 by integration.
y'' + y' + 1 = 0
y'' + y' = - 1
∫(y'' + y') dx = ∫- 1 dx
∫y'' dx + ∫y' dx = ∫- 1 dx
y' + y = - x + C
(e^x)(y' + y) = (e^x)(- x + C)
(e^x)y' + (e^x)y = - xe^x + Ce^x
(ye^x)' = - xe^x + Ce^x
ye^x = ∫(- xe^x + Ce^x) dx
ye^x = ∫- xe^x dx + ∫Ce^x dx
ye^x = ∫- x d(e^x) + Ce^x + C_0
ye^x = - xe^x - ∫e^x d(- x) + Ce^x + C_0
ye^x = - xe^x + ∫e^x dx + Ce^x + C_0
ye^x = - xe^x + e^x + Ce^x + C_1
ye^x = - xe^x + (C_2)e^x + C_1
y = - x + (C_1)e^(- x) + C_2