algebra 代數

2008-06-01 2:48 am
b>0 , c>0

b+c+(1/bc)

的最小值是什麼?

要詳細解答

回答 (2)

2008-06-01 9:02 am
✔ 最佳答案
Consider
   (√b-√c)²>=0
=>  b-2√(bc)+c>=0
=>  b+c>=2√(bc)

Therefore, we have

b+c+1/(bc)>=2√(bc)+1/(bc)

Let x=bc, we have

b+c+1/(bc)>=2√x+1/x

Let f(x)=2√x+1/x, we have

df(x)/dx=2(1/2)/√x-1/x²=1/√x-1/x²
d²f(x)/dx²=-(1/2)/(√x)³+2/x³   (1)

To find the critical value of f(x), we set

   df(x)/dx=0
=> 1/√x-1/x²=0
=> 1/√x=1/x²
=> x²/√x=1   (b>0,c>0 => bc>0 => x>0)
=> (√x)³=1
=> x=1

Therefore, the critical value of f(x) occurs when x=1.

From (1), we have when x=1

d²f(x)/dx²=-(1/2)/(√1)³+2/1³=3/2>0

Therefore, f(1)=2√1+1/1=3 is the minimum value of f(x).

Therefore, b+c+1/(bc)>=f(x)>=3

It is obvious that when b=c=1, we have

b+c+1/(bc)=1+1+1/(1.1)=3

Therefore, the minimum value of b+c+1/(bc) is 3.
2008-06-01 4:59 am
f(x) = x + c + 1/(cx)
f`(x) = 1 - (1/c) (1/x^2)
f``(x) = (2/c) (1/x^3) > 0
set f`(x) = 0, x = 1/sqrt(c)
min f(x) = 1/sqrt(c) + c + (1/c) (sqrt(c))
= 2/sqrt(c) + c
------------------------------------------
g(x) = 2/sqrt(x) + x
g`(x) = -1/x^(3/2) + 1
g``(x) > 0
set g`(x) = 0, x = 1
min g(x) = 2/sqrt(1) + 1 = 3
so, 最小值 = 3


收錄日期: 2021-04-15 15:05:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080531000051KK02245

檢視 Wayback Machine 備份