littlestar1022經常删除問題及答案

2008-05-30 6:41 pm
littlestar 問了多條有關最大公因數及最小公倍數的問題,我答了3題,他/她在限期屆滿前就把全部3題的紀錄删除了。再看一看其檔案,此人竟已删除超過20題問題‧

我與此人素不相識,提供答案,只是希望給所有網友大家參詳。如今記錄給删除,後來者未能參考,實有違此知識版之精神。

徵方法應付此類人。

曾向littlestar1022提供的答案:

Glad to see so many questions on Number Theory down here. My attempt on this question is as follow:

Assume the fraction of [(a+c)/(b+d)] could be further simplified.
Then there exists a common divisor “m” of (a+c) and (b+d) such that
(i)m is a positive integer;
(ii)m is greater than 1;
(iii)(a+c) = mp ; and (b+d)=mq for some integers p and q.

Given ab-cd=1 (or -1),
We have ab+bc-bc-cd=1 (or-1)
b(a+c)-c(b+d)=1 (or-1)
By (iii), mbp-mcq=1 (or -1)
m[bp-cq]=1(or-1)
[bp-cq]= (1/m) ( or – (1/m))

Since b, c, p and q are all integers, the left hand side of the equation [bp-cq] must be an integer too. However, the right hand side is (1/m) or (-1/m) which must not be an integer given that m is a positive integer greater than 1. Contradiction arises. Therefore, the assumption must be wrong. Hence the fraction of [(a+c)/(b+d)] could not be further simplified.
更新1:

不是我懂或不懂的問題,我所答者亦未必正確;而是此類人用心可疑。删除資料是不是不想其他人也可以參考這些資料。無論如何,myisland8132,多謝你的回覆。

回答 (1)

2008-05-31 1:04 am
✔ 最佳答案
我都答了2,3條number theory﹐不過無所謂啦﹐反正delete了個題目都尚在﹐証明你識答此類題目啦。


收錄日期: 2021-04-25 16:58:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080530000051KK00583

檢視 Wayback Machine 備份