✔ 最佳答案
1.
Find the value of cos28sin62+cos62sin28
cos28sin62 + cos62sin28
= cos28sin(90-28) + sin28cos(90-62)
= cos^2 28 + sin^2 28
= 1//
2.
Prove the following identity.
(cosθ+sinθ)^2-1=2cos^2θ√[(1/cosθ)+1][(1/cosθ)-1]
RHS
= 2cos^2 θ √[(1/cosθ)+1][(1/cosθ)-1]
= 2cos^2 θ √[(1/cos^2 θ) - 1]
= 2cos^2 θ √[(1-cos^2 θ)/cos^2 θ]
= 2cos^2 θ √(sin^2 θ /cos^2 θ)
= 2cos^2 θ (sinθ/cosθ)
= 2sinθcosθ
= 1 + 2sinθcosθ - 1
= cos^2 θ + 2sinθcosθ + sin^2 θ - 1
= (cosθ + sinθ)^2 - 1
= LHS//
3.
Simplify sin(90-θ)/tan(90-θ)
sin(90-θ)/tan(90-θ)
= cosθ / (1/tanθ)
= cosθ / [1/(sinθ/cosθ)]
= cosθ / (cosθ/sinθ)
= cosθ x sinθ/cosθ
= sinθ//
4.
Prove the following identity.
sin^2θ-sin^4θ+cos^4θ=cos^2θ
LHS
= sin^2 θ (1 - sin^2 θ) + cos^4 θ
= (sin^2 θ)(cos^2 θ) + cos^4 θ
= cos^2 θ(sin^2 θ +cos^2 θ)
= cos^2 θ
= RHS//