F.4 AMATHS (1 question) 10 marks!!!!!

2008-05-26 7:11 am
Eliminate the parameter θ from each of the following parametric equations, and hence, find an equation in x and y.

x = 2(sec θ + tan θ), y = 2(sec θ - tan θ)

回答 (3)

2008-05-26 7:17 am
✔ 最佳答案
New Trend EX 11C Q7 (if I haven't remembered wrongly...as I have just done that 2 hours ago.)
x = 2(secθ + tanθ)
y = 2(secθ - tanθ)
xy = 4(secθ + tanθ)(secθ - tanθ)
xy = 4(sec2θ - tan2θ)
xy = 4(1)
xy = 4//

2008-05-25 23:49:04 補充:
it should be Q6 instead of Q7
2008-05-26 7:21 am
x=2/cosθ *(1+sinθ)
y=2/cosθ *(1-sinθ)
x*y=4/cos^2 θ (1-sin^2 θ)
=4

希望你明
2008-05-26 7:20 am
1+tan θ^2=sec θ^2

so,combine the equation
xy=4(sec θ + tan θ)(sec θ - tan θ)
xy=4(sec θ^2-tan θ^2) because(sec θ^2-tan θ^2=1)
so,xy=4(1)
xy=4
參考: me


收錄日期: 2021-04-13 16:10:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080525000051KK03558

檢視 Wayback Machine 備份