在正方形中找角度(用畢氏定理)問題分數:10marks

2008-05-26 5:02 am

回答 (3)

2008-05-26 8:20 pm
✔ 最佳答案
let A is (0,0) , B is (0,a) , C is (a,0) , P is (x,y)

then we get :

x^2+y^2=1 --(1)
x^2+y^2-2ay+a^2-4=0--(2)
x^2+y^2-2ax+a^2-9=0--(3)

solve the equation , we get
a=2.982937438
x=0.150508648
y=0.988608692

....then angle APB=167.0277599.
2008-05-29 12:56 am
Let side of the square ABCD=n, therefore, AB=AC=n.
Let AngleBAP=x.
For triangle BAP, using cosine rule:
2^2 = n^2 +1^2 - 2(1)(n)cosx..........................(1)
For triangle PAC again using cosine rule:
3^2= 1^2 + n^2 -2(1)(n)cos(90-x) (since angle BAC is a rt-angle.)
or 3^2 = 1^2 +n^2 -2(1)(n)sinx........................(2)
From (1), we get 2ncosx =n^2-3................(3)
From (2), we get 2nsinx = n^2 -8................(4)
Therefore, (2ncosx)^2 + (2nsinx)^2 = (n^2-3)^2 + (n^2 -8)^2
4n^2 = n^4 -6n^2 +9 + n^4 -16n^2 + 64
2n^4 -26n^2 +73 = 0
Solving the quadratic equation we get n^2=8.898 or 4.102, that is side of the square n=2.983 or 2.025(reject because it cannot accomodate PC=3)
Again applying cosine rule to triangleBAP, therefore,
n^2 = 2^2 + 1^2 -2(2)(1) cos(angle APB)=8.898
therefore, angle APB=cos^-1[(5-8.898)/4] = 167 degree.
2008-05-27 10:30 pm
Rotating triangle PAC about point A through 270 º clockwise, we get C coincide with B and P goes to Q.

Now, draw the line PQ and we have

AP=AQ=1
∠QAP=∠BAP+∠QAB=∠BAP+∠PAC=∠BAC=90 º

Therefore,

PQ=√(1²+1²)=√2
∠APQ=(180-90)/2=45 º

By the cosine law, we have

BQ²=BP²+PQ²-2BP.PQcos(∠QPB)
=> 9=4+2-2.2√2cos(∠QPB)
=> cos(∠QPB)=-3/(4√2)
=> ∠QPB=122.03 º

∠APB=∠APQ+∠QPB=45+122.03=167.03 º

-----------------------------

However, from your diagram, I think you mean PD=3 instead of PC=3. In such a case, consider rotating triangle BPD about point B through 270 º counterclockwise, we get D coincide with A and P goes to Q.

Now, draw the line PQ and we have

BP=BQ=2
∠PBQ=∠PBA+∠ABQ=∠PBA+∠DBP=∠DBA=90 º

Therefore,

PQ=√(2²+2²)=√8
∠QPB)=(180-90)/2=45 º

As AP²+PQ²=1+8=9=AQ², by the Pythagorean theorem, we have

∠APQ=90 º
∠APB=∠APQ+∠QPB=90+45=135 º


收錄日期: 2021-04-15 15:04:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080525000051KK03076

檢視 Wayback Machine 備份