probability 2

2008-05-25 7:52 pm
A box contains five balls numbered with 1, 3, 5, 7, and 9 separately. Two balls are drawn from the box one by one without replacement. Find the probability that the sum of the numbers on the balls drawn is
(a). 10
(b). an even number
(c). divisible by 3

回答 (3)

2008-05-25 8:16 pm
✔ 最佳答案
(a). required outcome: (1+9) & (3+7)
all the possible outcome: 5C2 = 10
required probability: 2/10 = 1/5

(b). required probability = 1

(as the sum of any 2 odd numbers must be an even number, thats all outcome should be fitted in this case)

(c). required outcome: (1,5), (3,9), (5,7)
all the possible outcome: 5C2 = 10
required probability: 3/10
參考: 自己計算
2008-05-25 8:13 pm
the answer is B!!
Why??
Answer:
1+3=4 1+5=6 1+7=8 1+9=10
3+1=4 3+5=8 3+7=10 3+9=12
5+1=6 5+5=10 5+7=12 5+9=14
7+1=8 7+5=12 7+7=14 7+9=16
9+1=10 9+5=14 9+7=16 9+9=18
2008-05-25 8:12 pm
A box contains five balls numbered with 1, 3, 5, 7, and 9 separately. Two balls are drawn from the box one by one without replacement. Find the probability that the sum of the numbers on the balls drawn is



(a). 10
1+9=10
7+3=10

只有這2種情況

P(1+9 or 9+1) = (1/5)*(1/4) * 2 = 1/10
P(7+3 or 3+7 ) = (1/5)*(1/4) * 2 = 1/10
P(1+9 or 9+1 or 7+3 or 3+7 ) = 1/10 * 2 = 1/5


(b). an even number

1+3=4
1+5=6
1+7=8
1+9=10

3+1=4
3+5=8
3+7=10
3+9=12

5+1=6
5+3=8
5+7=12
5+9=14

7+1=8
7+3=10
7+5=12
7+9=16

9+1=10
9+3=12
9+5=14
9+7=16

全部case 都可以變成even number~
所以P(sum is even number ) = 1

(c). divisible by 3

1+3=4
1+5=6---------divisible by 3
1+7=8
1+9=10

3+1=4
3+5=8
3+7=10
3+9=12---------divisible by 3

5+1=6---------divisible by 3
5+3=8
5+7=12---------divisible by 3
5+9=14

7+1=8
7+3=10
7+5=12---------divisible by 3
7+9=16

9+1=10
9+3=12---------divisible by 3
9+5=14
9+7=16

P---------(divisible by 3) = 6/20 = 3/10


收錄日期: 2021-04-23 17:55:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080525000051KK00914

檢視 Wayback Machine 備份