08- CE A.MATHS SQ 第13題

2008-05-19 1:17 am
LET f(x)=x(x-6)2
a) find the maximum and minimum points of the graph of y=f(x)
b)Sketch the graph of y=f(x)
(7marks)

麻煩解答@@
個graph 盡可能畫啦 唔該曬

回答 (1)

2008-05-19 1:31 am
✔ 最佳答案
Not difficult

(a)

y=x(x-6)^2=x(x^2-12x+36)=x^3-12x^2+36x

dy/dx=3x^2-24x+36

d^2y/dx^2=6x-24

Let dy/dx=0

3x^2-24x+36=0

x^2-8x+12=0

(x-2)(x-6)=0

x=2 or 6

when x=2 , d^2y/dx^2=6x-24=-12<0

when x=6 , d^2y/dx^2=6x-24=12>0

So (2,32) is a maximum point

(6,0) is a minimum point

(b)

Notice that

when x<2 dy/dx>0

when 2<x<6 dy/dx<0

when x>6 dy/dx >0

Using this information, you can draw the graph easily

There is a graph calculator which can sketch the graph

http://webgraphing.com/graphing_basic.jsp

2008-05-18 17:34:08 補充:
最重要條graph要過(0,0)

而且因為那三個區域都是單調遞增或遞減﹐所以好易畫


收錄日期: 2021-04-13 15:34:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080518000051KK02218

檢視 Wayback Machine 備份