Verifying Trigometric Identitiis (Sin, Cos, Tan...) 20pts~

2008-05-10 10:43 pm
Please verify each identitis:
(The answers should turns out to be X = X)

1. cosθ*cotθ = (1-sin^2(θ))/sinθ
2. (sinθ/tanθ)+(cosθ/cotθ) = sinθ+cosθ
3. (sinθ/(cosθ+1))+((cosθ-1)/sinθ) = 0
4. (tan^2(θ)-cot^2(θ))/(tanθ+cotθ) = tanθ-cotθ
5. (cscθ-1)/cotθ = cotθ/(cscθ+1)

I understand it's kind of long, but please help... 20pts...
Thank you!!!

回答 (1)

2008-05-10 11:37 pm
✔ 最佳答案
since cotθ=1 / tanθ
tanθ = sinθ/ cos θ
cotθ = cosθ/ sin θ
1-sin^2(θ) = cos^2(θ)
1.cosθ*cotθ = cos^2(θ)/ sinθ = (1-sin^2(θ))/sinθ
2. (sinθ/tanθ)+(cosθ/cotθ) = [sinθ/(sinθ/cosθ)]+[cosθ/(cosθ/sinθ) = sinθ+cosθ
3.(sinθ/(cosθ+1))+((cosθ-1)/sinθ) = sin^2(θ)+cos^2(θ)-1 = 1-1 = 0
4.(tan^2(θ)-cot^2(θ))/(tanθ+cotθ) = (tanθ+cotθ)*(tanθ-cotθ) / (tanθ+cotθ) = tanθ-cotθ
5.(cscθ-1)/cotθ = (1/sinθ-1)/(cosθ/sinθ)=
cotθ/(cscθ+1) = (cosθ/sinθ)/(1+sinθ/sinθ)
1-sin^2(θ) = cos^2(θ)
SO ,(cscθ-1)/cotθ = cotθ/(cscθ+1)
參考: ME


收錄日期: 2021-04-13 16:25:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080510000051KK01442

檢視 Wayback Machine 備份