amaths問題(20分)

2008-04-16 7:52 pm
tan3x/tanx=k

find sin3x/sinx in terms of k
更新1:

答案唔岩喎 你有冇check架 問題未解決 計到+show埋steps即俾20分

回答 (2)

2008-04-18 9:26 pm
✔ 最佳答案
我做左落張紙到,下面有條link,你睇下計得岩唔岩
希望幫到你^^
http://i90.photobucket.com/albums/k278/kkcas/amaths.jpg
2008-04-16 10:44 pm
tan3x=(tan2x+tanx)/(1-tan2xtanx)
={[2tanx/(1-tan^2x)]+tanx}/{1-tanx[2tanx/(1-tan^2x)]}
=(2tanx+tanx-tan^3x)/(1-tan^2x-2tan^2x)
=(3tanx-tan^3x)/(1-3tan^2x)

tan3x/tanx=(3-tan^3x)(1-3tan^2x)
(1-3tan^2x)k=3-tan^3x
(1-3k)tan^2x=3-k
tan^2x=(3-k)/(1-3k)

1/(tan^2x+1)=cos^2x
=1-sin^2x
sin^2x=1-1/(tan^2x+1)
=1-(1-3k)/(3-k+1-3k)
=(4-4k-1+3k)/(4-4k)
=(3-k)/(4-4k)
sin3x/sinx=(3sinx-4sin^3x)/sinx
=-4sin^2x-3
=-4(3-k)(4-4k)-3
=-(3-k)/(1-k)-3
=(3-k)/(k-1)-3


收錄日期: 2021-04-26 11:54:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080416000051KK00703

檢視 Wayback Machine 備份