F.4 Maths Trigo

2008-04-15 5:07 am
Solve 2 cos x = sin x +1 for 0<x<180

回答 (3)

2008-04-15 5:32 am
✔ 最佳答案
2 cos x = sin x +1
(2 cos x)^2 = (sin x +1)^2
4 (cos x)^2 = (sin x)^2+ 2 sin x + 1
4 [1- (sin x)^2] = (sin x)^2+ 2 sin x + 1
4- 4(sin x)^2 = (sin x)^2+ 2 sin x + 1
5(sin x)^2 + 2 sin x - 3 = 0
(5sin x -3) (sin x +1) = 0
sin x = 3/5 or -1
x= 36.870 or 143.13 or 270
2008-04-15 9:21 am
2cos x = sinx +1
(2cos x)^2 = (sinx +1)^2
4(cos x)^2 = (sinx)^2+ 2sin x + 1
4[1- (sinx)^2] = (sinx)^2+ 2sin x + 1
4- 4(sin x)^2 = (sin x)^2+ 2 sin x + 1
5(sin x)^2 + 2 sin x - 3 = 0
(5sin x -3) (sin x +1) = 0
sin x = 3/5 or sin x = -1 (rejected as 0<x<180)
x= 36.9 or 143.1 (rejected since 2cos x = sinx +1 → cosx = (sinx+1)/2 >=(-1+1)/2>=0 )
therefore x = 36.9

(>= means greater than or equal to)

if you cant understand why we should reject 143.1
you may sub it back to the equation and you will find that LHS ≠ RHS
2008-04-15 6:27 am
2cosx=sinx+1
2cosx-sinx=1
√5[cosx(2/√5)-sinx(1/√5)]=1
√5cos(x+26.6˚)=1
cos(x+26.6˚)=1/√5
x+26.6˚=63.4˚
x=36.8˚




收錄日期: 2021-04-13 15:26:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080414000051KK02536

檢視 Wayback Machine 備份