✔ 最佳答案
Let y = f(x), then we have:
dy/dx = 1968ex + y
dy/dx - y = 1968ex
e-x(dy/dx) - ye-x = 1968
d(ye-x)/dx = 1968
ye-x = 1968x + C, where C is an arbitrary constant.
y = 1968xex + Cex
From the given:
dy/dx = 1968ex + y
d2y/dx2 = 1968ex + dy/dx
d2y/dx2 = 1968ex + 1968ex + y
d2y/dx2 = 3936ex + 1968xex + Cex
At x = 0, d2y/dx2 = 1, so
3936 + C = 1
C = -3935
Therefore,
y = f(x) = 1968xex - 3935ex