factorization~~~~~~~

2008-04-07 3:06 am
1) x^3+y^3 -(x+y)^3
2) x^6 -64
要有埋式

回答 (2)

2008-04-07 4:17 am
✔ 最佳答案
1.
x^3 y^3-(x+y)^3
= (x+y)(x^2-xy+y^2) - (x+y)^3
= (x+y)[x^2-xy+y^2-(x+y)^2]
= (x+y)(x^2-xy+y^2-x^2-2xy-y^2)
= (x+y)(-3xy)
= -3xy(x+y)

OR:
= x^3+y^3-x^3-3x^2 y-3xy^2-y^3
= -3x^2 y-3xy^2
= -3xy(x+y)


2.
x^6-64
= (x^3)^2-8^2
= (x^3+8)(x^3-8)
= (x+2)(x^2-2x+4)(x-2)(x^2+2x+4)

3.
4a^2(y-2)^2-a^2
= a^2[4(y-2)^2-1]
= a^2[4(y-2)+1][4(y-2)-1]
= a^2(4y-8+1)(4y-8-1)
= a^2(4y-7)(4y-9)
2008-04-07 4:58 am
1) x+y-(x+y)
=(x+y)(x-xy+y)-(x+y)
=(x+y)[(x-xy+y)-(x+2xy+y)]
=(x+y)(-3xy)
=-3xy(x+y)
2)x6-64
=x6-26
=(x2)3-(22)3
=(x2-22)(x4+4x2+16)
=(x-2)(x+2)(x4+4x2+16)
3) 4a2(y-2)2-a2
=a2[4(y-2)^2-1]
=a2[(y-2)-1][(y-2)+1]
=a2(y-3)(y-1)



收錄日期: 2021-04-13 15:23:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080406000051KK02631

檢視 Wayback Machine 備份