✔ 最佳答案
Proofs of l'Hpital's rule
Proof by Cauchy's mean value theorem
The most common proof of l'Hpital's rule uses Cauchy's mean value theorem.
With the indeterminate form 0 over 0
The case when
圖片參考:
http://upload.wikimedia.org/math/0/9/2/0925ceaf9898809fe825e56b67d63ebd.png
First, we expand continuously (or redefine) f(x) and g(x) by 0 for x = c. This doesn't change the limit since the limit doesn't depend on the value in the point (by definition).
According to Cauchy's mean value theorem there is a constant ξ in c < ξ < c + h such that:
圖片參考:
http://upload.wikimedia.org/math/7/8/f/78fd3a5478ad6c5311828dcda3fd86ea.png
Since f(c) = g(c) = 0,
圖片參考:
http://upload.wikimedia.org/math/0/9/0/090b99595cc6e5e3f7f12c82af1c9aec.png
If
圖片參考:
http://upload.wikimedia.org/math/3/f/2/3f22bdd6af2d34d214c8e2ef41fb26b1.png
and
圖片參考:
http://upload.wikimedia.org/math/7/e/7/7e7d16c2e5858ebb78b46c4c9d44bdb7.png
With the indeterminate form infinity over infinity
The case when
圖片參考:
http://upload.wikimedia.org/math/2/8/a/28a6a86109cc550a54fa9ad4e3a07ba4.png
Let x < y < x + h. Then using Cauchy's mean value theorem:
圖片參考:
http://upload.wikimedia.org/math/3/b/2/3b2300af84c03d02f989259a7073e257.png
We rewrite that in the form
圖片參考:
http://upload.wikimedia.org/math/4/b/2/4b2548d8cc3ac15edf419fb90d5b18cf.png
and then by the discussion of the two cases
圖片參考:
http://upload.wikimedia.org/math/4/1/7/4178b20a503d6adbb238ec37073c7209.png
we show that the limit of f(x)/g(x) tends to the same when
圖片參考:
http://upload.wikimedia.org/math/a/b/c/abc9a2acb046ce9b5903236829ac2b29.png
.