A maths 問題

2008-03-29 3:24 am
It is given that
(1 - 2x + 3x^2)^n = 1 - 10x + kx^2 = + terms involving higher powers of x, where n is a positive interger and k is a constant. Find the values of n and k.

回答 (1)

2008-03-29 3:52 am
✔ 最佳答案
(1-2x+3x^2)^n=1-10x+kx^2 + terms involving higher powers of x,

(1+x(3x-2))^n=1-10x+kx^2 + terms involving higher powers of x

1+nx(3x-2)+[(n(n-1)/2][x(3x-2)]^2+...=1-10x+kx^2 + terms involving higher powers of x

1+nx(3x-2)+[(n(n-1)/2][x(3x-2)]^2=1-10x+kx^2+...

1+3nx^2-2nx+[(n(n-1)/2][4x^2]=1-10x+kx^2

1+3nx^2-2nx+[(n(n-1)][2x^2]=1-10x+kx^2

-2n=-10

3n+2(n)(n-1)=k

n=5

k=15+2*5*4

k=55


收錄日期: 2021-04-26 13:04:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080328000051KK02902

檢視 Wayback Machine 備份