Answer: 2:5
Solution:
Method 1:Analytic Approach
Refer to the figure.
(Figure:
http://farm4.static.flickr.com/3251/2362975083_52f57cb127.jpg?v=0)
The equation of AC is
(y-0)/(x-a)=(2b-0)/(0-a)
-ay=2bx-2ab
2bx+ay-2ab=0
The equation of DM is
(y-0)/(x-0)=(b-0)/(a-0)
ay=bx
∵N(c,d)lies on both AC and DM.
we have 2bc+ad-2ab=0 ------------ (1)
and ad=bc --------------------------- (2)
Putting (2) into (1):
2ad+ad-2ab=0
3ad=2ab
d=(2/3)b ----------------------------- (3)
Putting (3) into (1):
a(2/3)b=bc
c=(2/3)a
The coorcinates of N are (2a/3, 2b/3).
Area of ΔNCD=(1/2){[0*0+a*(2b/3)+(2a/3)*0]-[a*0+(2a/3)*0+0*(2b/3)]}
=(1/3)ab
Area of ABMN
=(1/2){[0*(2b/3)+(2a/3)*b+a*2b+a*2b]-[(2a/3)*2b+a*(2b/3)+a*b+0*2b]}
=(5/6)ab
∴Area of NCD : Area of ABMN =(1/3)ab:(5/6)ab=2:5
Method 2: Deductive Approach
Refer to the figure.
(Figure:
http://farm4.static.flickr.com/3015/2364039826_f9ca89ab6e.jpg?v=0)
Join AM. Let the area of ABCD be 12x.
∵M is the mid-point of BC.
∴Area of ΔABM=Area of ΔACM=Area ofΔCDM=1/4(12x)=3x
Consider ΔADN and ΔCMN.
∠ADN=∠CMN (alt.∠s, AD//BC)
∠DAN=∠MCN (alt.∠s, AD//BC)
∠AND=∠CNM (vert. opp. ∠s)
∴ΔADN~ΔCMN (AAA)
∴AN:NC=DN:NM=AD:CM=2:1 (corr. sides, ~Δs)
∴Area of ΔAMN:Area of ΔCMN=2:1
and Area of ΔNCD:Area od ΔCMN=2:1
∴Area of ΔAMN=Area of ΔACM*2/(2+1)=2x
Area of ΔNCD=Area of ΔCDM*2/(2+1)=2x
Area of ABMN=Area of ΔAMN+Area of ΔABM=5x
∴Area of NCD : area of ABMN =2x:5x=2:5