exponential

2008-03-13 4:46 pm
Show that lim_(t->inf) (1+x/t)^t = e^x and hence show
lim_(n->inf) (1+x/n)^n = e^x.

回答 (1)

2008-03-13 5:27 pm
✔ 最佳答案
question is not clear, since you have not state the definition of t and n.

BTW, the proof of the first part is:

e = lim_(t->inf) (1+1/t)^t

lim_(t->inf) (1+x/t)^t
= lim_(t/x->inf) ((1+x/t)^t/x )x

let y=t/x
= lim_(y->inf) ((1+1/y)^y )x
= e^x


收錄日期: 2021-04-15 01:25:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080313000051KK00384

檢視 Wayback Machine 備份