急問amathe高手!!!10分+++++

2008-03-12 12:33 am
幫我做呢幾條數啊,唔該!!(請用中文)

1)在曲線C上任意點(x,y),C的斜率為3x^2 - 6x - 1。C通過(0,1)。
(a)求C的方程。
(b)C與y軸相交於一點。求C在該點的切線方程。

2)求∫(sinx-cosx)^2 dx

3)設y=tan(1/x),證明x^2 (dy/dx) + (y^2 +1)=0,

由此證明 (d^2 y / dx^2 ) + [2(x+y)/x^2][dy/dx]=0

回答 (1)

2008-03-12 12:49 am
✔ 最佳答案
1
dy/dx = 3x^2 - 6x - 1 (given)
y = ∫3x^2 - 6x - 1 dx
y = x^3 - 3x^2 - x + C ... (1)

Substitute (0,1) into (1),
C = 1

Equation of C is y = x^3 - 3x^2 - x + 1


2.
∫(sinx-cosx)^2 dx
= ∫sin^2 x + cos^2 x - 2sinx cosx dx
= ∫1 - sin 2x dx
= x + cos2x / 2 + C

3. y = tan (1/x)
dy/dx = [sec^2 (1/x)] (-1/x^2)
x^2 (dy/dx) = - [1 + tan^2 (1/x)]
x^2 (dy/dx) + (y^2 + 1) = 0 (Since y = tan (1/x))

Differentiate both sides of the above result with respect to x,
x^2 (d^2 y/dx^2) + dy/dx (2x) + 2y (dy/dx) = 0

Dividing both sides by x^2,
(d^2 y/dx^2) + [2(x + y) / x^2] (dy/dx) = 0

2008-03-11 16:51:58 補充:
1. dy/dx = 3x^2 - 6x - 1 (已知)
y = ∫3x^2 - 6x - 1 dx
y = x^3 - 3x^2 - x + C ... (1)

把 (0,1) 代入 (1),
C = 1

C 的方程是 y = x^3 - 3x^2 - x + 1

3. 將 "Differentiate both sides of the above result with respect to x" 改為 "兩邊對 x 微分"
"Dividing both sides by x^2," 改為 "兩邊除以 x^2"


收錄日期: 2021-04-13 15:16:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080311000051KK01356

檢視 Wayback Machine 備份