超急!!!maths~~factorization!!

2008-03-04 1:51 am
超急!!!!maths~~factorization!!!!!!!!!!

factorize this:

x^6 + 2(x^4)(y^2) + (y^4)(x^2) - 4


ALL STEPS PLEASE!!!!!!!
ALL STEPS PLEASE!!!!!!!
ALL STEPS PLEASE!!!!!!!
ALL STEPS PLEASE!!!!!!!
ALL STEPS PLEASE!!!!!!!
ALL STEPS PLEASE!!!!!!!
ALL STEPS PLEASE!!!!!!!
ALL STEPS PLEASE!!!!!!!
ALL STEPS PLEASE!!!!!!!
ALL STEPS PLEASE!!!!!!!


thz~thz~thz~thz~thz~thz~thz~thz~thz~thz~

回答 (2)

2008-03-04 2:10 am
✔ 最佳答案
x^6 + 2x^4y^2 + y^4x^2 ﹣4

= (x^4 + 2x^2y^2 + y^4)x^2 ﹣4


= x^2(x^2 + y^2)^2 ﹣4


= [(x^2 + y^2) x]^2 ﹣2^2


= [(x^2 + y^2) x ﹣2] [(x^2 + y^2)x + 2]


= (x^3 + xy^2 ﹣2) (x^3 + xy^2 + 2)

2008-03-03 18:12:15 補充:
利用恆等式: a^2 ﹣b^2 = (a ﹣b)(a + b)
利用恆等式: (a + b)^2 = a^2 + 2ab + b^2

2008-03-03 18:45:09 補充:
先抽出個x^6 + 2(x^4)(y^2) + (y^4)(x^2)中的因子x^2

然後x^4 + 2(x^2)(y^2) + y^4可利用恆等式: (a + b)^2 = a^2 + 2ab + b^2分解

設x^2為a,y^2為b,(x^2)^2 + 2(x^2)(y^2) + (y^2)^2

2008-03-03 18:45:15 補充:
再利用恆等式: a^2 ﹣b^2 = (a ﹣b)(a + b)分解[(x^2 + y^2) x]^2 ﹣2^2

設[(x^2 + y^2)x]為a,2為b,

最後可得出[(x^2 + y^2) x ﹣2] [(x^2 + y^2)x + 2]

可再化簡成(x^3 + xy^2 ﹣2) (x^3 + xy^2 + 2)
2008-03-04 2:35 am
x^6 + 2(x^4)(y^2) + (y^4)(x^2) - 4
=(x^2)(x^4+2x^2y^2+y^4)-4
=(x^2)(x^2+y+2)^2-4
再仔細d,可以繼續
=(x(x^2+y+2))^2-2^2
=(x(x^2+y+2)+2)*(x(x^2+y+2)-2)

有d亂,唔知岩唔岩
自己check check

2008-03-03 18:36:43 補充:
最後打錯
(x(x^2+y+2)+2)*(x(x^2+y+2)-2)
正常應該係:
=(x(x^2+y^2)+2)*(x(x^2+y^2)-2)


收錄日期: 2021-04-23 22:59:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080303000051KK01662

檢視 Wayback Machine 備份