Absolute maximum

2008-03-01 7:00 pm
y = f(x) is an decreasing in interval [0, a] . Futhermore, f(x) > 0
for 0 <= x < a and f(a) = 0. Prove that x‧f(x) obtains its absolute
maximum for 0 <= x <= a if and only if (y / x)‧(dx / dy) = -1

y = f(x) 在區間 [0, a] 上遞減,而且對於 0 <= x < a,f(x) > 0
以及 f(a) = 0。證明 x‧f(x) 的值為絕對極大當且僅當
(y / x)‧(dx / dy) = -1

回答 (1)

2008-03-03 12:28 am
✔ 最佳答案
if g(x,y) = x‧f(x) = x*y
發生極值 g/dx dy = 0 (發生極值處 在 微分為0的地方)
g/dx dy = xdy + ydx = 0
xdy + ydx = 0
-> xdy = ydx
-> (y / x)‧(dx / dy) = -1
所以 (y / x)‧(dx / dy) = -1 時 x‧f(x) 的值為絕對極大


收錄日期: 2021-04-13 15:13:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080301000010KK03021

檢視 Wayback Machine 備份