y = f(x) is an decreasing in interval [0, a] . Futhermore, f(x) > 0
for 0 <= x < a and f(a) = 0. Prove that x‧f(x) obtains its absolute
maximum for 0 <= x <= a if and only if (y / x)‧(dx / dy) = -1
y = f(x) 在區間 [0, a] 上遞減,而且對於 0 <= x < a,f(x) > 0
以及 f(a) = 0。證明 x‧f(x) 的值為絕對極大當且僅當
(y / x)‧(dx / dy) = -1