matrix

2008-02-28 9:29 am
Let a_1,..., a_n E real number, where n>=2. Show that

1 a_1 (a_1)^2 ... (a_1)^(n-1)
1 a_2 (a_2)^2 ... (a_2)^(n-1)
... ... ... ... ...
1 a_n (a_n)^2 ... (a_n)^(n-1)

= Π(1=< i < j =< n) [(a_ j) –(a_i)]

(i.e
E denotes "in the interval of",
Π denotes "product of a series of terms")

PS. just in case someone doesnt get it, the big thing above is a matrix

THX a lot!

回答 (1)

2008-02-28 7:46 pm
✔ 最佳答案
你這個是Vandermonde Determinant

只要在Google上search可以找到很多證明。

這個證明是我見過最好的


收錄日期: 2021-04-15 01:25:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080228000051KK00184

檢視 Wayback Machine 備份