以最佳的方法計算以下題目(20分)

2008-02-18 1:01 am
1.5+99=n-99,求n

0[(x+y)^1]=11275x0,設x=1,求x

(5^2-25)(78^32+457)

7853^2-8345^2

a^2+b^2=c^2,設a是3,b是5,求c

6/0

0/0

2^-2

[(99+94+85-53)h]*6^(h-48),設h是50

有一間糖果店,產品a有56粒糖,產品b有42粒糖,a的1粒糖與b的1粒糖共值多少元?
更新1:

y^2=(pie+x)^5,求x及y

回答 (1)

2008-02-18 1:15 am
✔ 最佳答案
1. 5 + 99 = n - 99
n = 5 + 99 + 99
n = 5 + 100*2 - 2
n = 200 + 3
n = 203
0[(x+y)^1]=11275*0,設x=1,求y
because 0/0 is definded...
so y can be any of the numbers you like. (or infinity)
(5^2-25)(78^32+457)
=(5^2 - 5^2)(78^32 + 457)
=(25 - 25)*(78^32 + 457)
=0
7853^2-8345^2
=(7853 - 8345)(7853+8345)
=-492*(16198)
=-7969416
a^2+b^2=c^2,設a是3,b是5,求c
3^2 + 5^2 = c^2
c = rt(9 + 25)
c = rt 34
6/0
0/0
for any numbers divides by 0,
then it should be definded...
2^-2
=1/(2^2)
=1/4
[(99+94+85-53)h]*6^(h-48),設h是50
what do you mean?
有一間糖果店,產品a有56粒糖,產品b有42粒糖,a的1粒糖與b的1粒糖共值多少元?
the question has some problems...
y^2 = (pie+x)^5,求x及y
y^2 = (pi + x)^5
then x and y has many numbers... integers..
參考: me


收錄日期: 2021-04-24 00:28:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080217000051KK02909

檢視 Wayback Machine 備份