✔ 最佳答案
If the equation 4cos(x+45°)+ksin(x+45°)=psinx holds for all values of x, find the values of the constants k and p.
As 4cos(x+45°) + ksin(x+45°) = psinx ... (#)
holds for all real values of x
Put x = 0° into (#)
4cos(0°+45°) + ksin(0°+45°) = psin(0°)
4cos45° + ksin45° = p(0)
4(√2/2) + k(√2/2) = 0
4 + k = 0
k = -4
Put x = -45° into (#)
4cos(-45°+45°) + ksin(-45°+45°) = psin(-45°)
4cos0° + ksin0° = p(-sin45°)
4(1) + k(0) = -p(√2/2)
p = -8/√2
p = -4√2