急急急急急急!!兩條maths題[20分]

2008-02-14 2:40 am
1.把x^4+x^2y^2+y^4分解為因式
2.把x^6-y^6寫成兩個立方的差,由此分解x^6-y^6為因式

回答 (2)

2008-02-14 2:53 am
✔ 最佳答案
1. 把 x4 + x2y2 + y4 分解為因式
Sol:
x4 + x2y2 + y4
= x4 + 2x2y2 + y4 - x2y2
= ( x2 + y2 ) - (xy)2
= ( x2 - xy + y2 ) ( x2 + xy + y2 )
Ans: ( x2 - xy + y2 ) ( x2 + xy + y2 )
2. 把 x6 - y6 寫成兩個立方的差, 由此分解 x6 - y6 為因式
x6 - y6
= (x3)2 - (y3)2
= ( x3 - y3 ) ( x3 + y3 )
= ( x - y ) ( x2 + xy + y2 ) ( x + y ) ( x2 - xy + y2 )
= ( x - y ) ( x + y ) ( x2 - xy + y2 ) ( x2 + xy + y2 )
Ans: ( x - y ) ( x + y ) ( x2 - xy + y2 ) ( x2 + xy + y2 )
Send me a letter and tell me which step if you don’t understand.
參考: 數學小頭腦
2008-02-14 3:00 am
1. x^4+x^2y^2+y^4

= (x^2+y^2)^2-x^2y^2
= (x^2+y^2)^2-(xy)^2
= (x^2+y^2+xy)(x^2+y^2-xy)

2. x^6-y^6

= (x^2)^3 - (y^2)^3
= (x^2 - y^2) (x^4+x^2y^2+y^4)
= (x-y) (x+y) (x^2+y^2+xy)(x^2+y^2-xy)


收錄日期: 2021-04-13 15:08:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080213000051KK03637

檢視 Wayback Machine 備份