✔ 最佳答案
tan 3θ
=tan(2θ+θ)
=(tan2θ+tanθ)/(1-tan2θ tanθ)
as we all know ,if tan2θ = (tan3θ-tan2θ-tanθ)/(tan3θtanθ) , the statement is ture
then tan2θtan3θtanθ= tan3θ-tan2θ-tanθ)
==> tan2θtan3θtanθ/ tan3θ-tan2θ-tanθ=1
so , we can prove tan2θtan3θtanθ/ tan3θ-tan2θ-tanθ = 1 is right
then tan2θ = (tan3θ-tan2θ-tanθ)/(tan3θtanθ) is true...
tan2θtan3θtanθ/ tan3θ-tan2θ-tanθ
=[(tan2θ+tanθ)tan2θtanθ/(1-tan2θ tanθ)]/[(tan2θ+tanθ)/(1-tan2θ tanθ)-tan2θ-tanθ)]
=[(tan2θ+tanθ)tan2θ tanθ ]/ [tan2θ+tanθ-tan2θ(1-tan2θ tanθ)-tanθ(1-tan2θ tanθ)
=(tan2θ+tanθ)tan2θ tanθ /[tan2θ+tanθ-tan2θ+tan2θ(tan2θ tanθ)-tanθ+(tanθ)(tan2θ tanθ)]
=(tan2θ+tanθ)tan2θ tanθ /[tan2θ(tan2θ tanθ)+(tanθ)(tan2θ tanθ)]]
=(tan2θ+tanθ)tan2θ tanθ/(tan2θ+tanθ)tan2θ tanθ
=1//
so tan2θ = (tan3θ-tan2θ-tanθ)/(tan3θtanθ)