F.4 附加數學 - 和差化積與積化和差公式

2008-01-30 4:28 am
證明下列各恒等式:

1. cos²(兀∕8 - A) - cos²(兀∕8 + A) = (√2 ∕ 2 )sin2A

2. sin3α sin^3 α + cos3α cos^3 α = cos^3 2α

回答 (3)

2008-01-30 4:40 am
✔ 最佳答案
1)L.H.S.
= cos2(π/8﹣A)﹣cos2(π/8 + A)
= [cos(π/8﹣A) + cos(π/8 + A)][cos(π/8﹣A)﹣cos(π/8 + A)]
= [2 cos(π/8) cosA][2 sin(π/8) sinA]
= sin(π/4) sin2A
= (√2/2)sin2A
= R.H.S.

2)L.H.S.
= sin3α sin3 α + cos3α cos3α
= 1/2(cos 2α﹣cos 4α) sin2 α + 1/2(cos2α + cos4α) cos2 α
= 1/2[cos 2α﹣cos 4α(cos2α﹣sin2α)]
= (1/2)(cos 2α + cos 4α cos 2α)
= cos 2α[(1/2)(1+ cos 4α]
= cos 2α(cos22α)
= cos32α
= R.H.S.
2008-01-31 5:20 am
Excellent ~
2008-01-30 5:34 am
1左方=cos²(π/8 -A)-cos²(π/8 +A)
=[1+cos(π/4 - 2A)]/2 - 1+cos(π/4 + 2A)]/2
=[cos(π/4-2A)-cos(π/4+2A)]/2
=sinπ/4sin2A
=(√2 ∕ 2 )sin2A
=右方


收錄日期: 2021-04-23 20:33:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080129000051KK02767

檢視 Wayback Machine 備份