a MATHS

2008-01-28 4:34 am
AP bisects the area of the semi circle APB. Given that ∠PAB=α , prove that
2α+sin2α = π/2
更新1:

我唔係好知喎..=) 不過點都好啦..thank you *

回答 (1)

2008-01-28 5:04 am
✔ 最佳答案
first you draw the circle with AB diameter
Now the area of the area composed by APB=πr^2/4
The area of APO=(1/2)r^2sin(180-2α)
The area composed by OPB=(2α/2π)(πr^2)
So area of APB=area of APO+area of OPB
πr^2/4=(1/2)r^2sin(180-2α)+(2α/2π)(πr^2)
πr^2/4=(1/2)r^2sin(2α)+(αr^2)
π/4=(1/2)sin(2α)+(α)
2α+sin2α = π/2
會考不是不考弧度了嗎?


收錄日期: 2021-04-25 16:54:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080127000051KK03421

檢視 Wayback Machine 備份