有D數學疑難?
x^2008-x^1004+1/x^1004的最小值係咩?
回答 (2)
x^2008-x^1004+1/x^1004
=x^2008-x^1004+1+x^1004-x^1004/x^1004
=(x^1004-1)^2+x^1004/x^1004
=(x^1004-1)^2/x^2004+1
since(x^1004-1)^2 and x^2004 must equal or larger than 0
so x^2008-x^1004+1/x^1004的最小值係1
收錄日期: 2021-04-20 20:05:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080127000051KK00078
檢視 Wayback Machine 備份