黑洞是怎樣來的?

2008-01-27 4:04 am
黑洞是怎樣來的?

回答 (5)

2008-01-27 4:09 am
✔ 最佳答案
黑洞的起源:

「黑洞」的觀念並不特別新奇,早在1798年,有名的學家拉步拉斯已察覺出因為無法射出光線於宇宙而被看成「黑洞」的星球之可能性。該想法在牛頓的重力理論的範圍內,極為簡單。此及縱然某種物體由行星、恆星、月球等彈出或射出。已知除非該物體具有比「逃離速度」更快的速度,它就不可能擺脫重力的引力脫離到宇宙空間。假如物體的速度比逃離速度慢,它不是掉回原位,就是像人造衛星那樣維繫其軌道運動。但拉步拉斯的構想被埋沒許久,因為一般認為不可能存在與太陽同一密度、半徑與地球的軌道半徑相同的星球,就算有也會因黑洞效果而不能觀測。可是到了1917年,黑洞終於以異於前述的方式被再提出討論。那是因為愛因斯坦的一般相對論出現而劃時代地改變重力的概念,使人們欲研究由此理論可預料的現象趨勢成熟。另外一提,關於“黑洞”這個名稱的由來,雖然天文學家Karl Schwarzschild在1916年就發現了廣義相對論中非旋轉黑洞的解,但是一直到1967年它才由諾貝爾物理學獎得主John Wheeler正式定名為“黑洞”(black hole)。


-------------------- -------------------- -------------------- --------------------

什麼是黑洞:

什麼是黑洞呢?簡單的說,黑洞就是一個其逃離速度超過光速的空間區域。大家知道,由於地球的引力,任何從地面發射的火箭如果沒有足夠的速度,就無法掙脫地球引力,最終會返回地面。換言之,如果火箭因運動而具有的動能小於它在引立場中所具有的位能的話,它就不能逃離。這些逃離速度我們都可以用牛頓力學公式求出。值的注意的是,不管脫離地球、脫離太陽或者脫離任何一個星體所需的逃離速度,不僅與該天體的質量有關,還與它的半徑(或密度)有關。這是因為引力不僅與質量有關還與距離有關,密度越大就越密集,天體表面也就越靠近它的中心,表面及其附近的引力就越強,因此,質量與太陽相近而半徑與地球差不多的白矮星,其逃離速度為6450公里每秒;質量與太陽相近,半徑只有10公里左右的中子星,其逃離速度竟達16萬公里每秒之巨。由此推論,隨著天體質量和密度的增加,逃離速度也不斷增加,終於會達到需要具有光的速度才能從相應的引力場中逃逸出去。但是,被越來越多的實驗證實的愛因斯坦相對論指出,沒有任何一種東西的運動速度能超過光速。因此,逃離速度為光速的天體,就是使任何東西(包括光)都不能從其中逃逸的天體,這就是黑洞。黑洞是一個幾乎與世隔絕的獨立宇宙,任何東西都不能從中逸出,但是外部的東西卻可以不斷進入,正像一個深不見底的漆黑洞穴,黑洞的名稱正是由此得來的。所以亦有人形容黑洞是只「吃」不「吐」的漆黑無底洞。



-------------------- -------------------- -------------------- --------------------


黑洞的形成:

黑洞的形成又可以有好幾種可能性,第一種較為可能的,是非常大量的物質集中聚集,而他們的密度保持不變,如此這一堆物質的引力就會隨著質量的增加而越來越強,最後引力強到連光都逃不出去,那麼它就會形成一個黑洞,例如把質量有1.4億個太陽的星體聚集起來,就會形成黑洞,這個黑洞的直徑是非常地驚人;第二種可能,是假若一顆恆星的質量固定不變,但是讓它不斷地收縮下去,那麼它的密度就會隨著體積的縮小而變得越來越大,引力場也越來越強,直到變成連光線也逃不出去的黑洞,例如要是把太陽收縮到半徑只有3000米那麼小,就會形成黑洞,這個黑洞直徑並不大,反而是密度非常大了。第三種可能本組以科學的方法來解釋:太陽的末期,氫會融合為氦,氦再融合為碳和氧以至更重的元素,直到核融合不能再提供能量為止,那時太陽內部將沒有足夠的壓力支撐外層的巨大重力,於是整個太陽要向中心塌縮。原子將被擠碎,電子要與核子分離,直到電子產生的壓力足以阻止太陽的進一步塌縮。那時的太陽密度很大,發出的光則只有原來的萬分之一,遂成了一顆白矮星。但是若恆星的某一質量大於某限度時,電子提供的壓力將不足以與引力抗衡,於是電子被擠入原子核內,與質子結合成中子,整個恆星塌縮為中子,密度變得更大了。當恆星的質量再比這個限度更大時,塌縮的結果是中子也無法存在,這時恆星將塌縮為黑洞。因此也有人說黑洞的形成是恆星演化、終結、死亡的結果。



-------------------- -------------------- -------------------- --------------------


黑洞內部的溫度及狀況:

此情況天文學家還沒有完全的定義。如果我們進入黑洞之中,首先會先通過事件地平面,進入一個完全是空的時空系統,只有恆星陷縮的奇異點(singular point)。雖然是空的時空系統,但其中可能存在著重力輻射,卻沒有任何可以“測出溫度”的介質。雖然在數學上可以預測出許多黑洞中奇特的狀況,如時空旅行等,但是卻很少人提及是否黑洞真的會以恆星陷縮的形式產生。根據超級電腦的計算,陷縮的過程可說是非常混亂。自轉黑洞曾被認為是通往其他宇宙的大門,或者是進入時光隧道的入口,但是經過研究恆星所形成的黑洞物理性質後發現,這些黑洞的內部充滿了巨大的重力輻射通量,粉粹了黑洞之旅的幾何可能性。如果黑洞在宇宙誕生後即形成,那麼其內部除了奇異點外一定空無所有,但是如果黑洞是由後來的超新星爆炸過程所產生的,那麼在我們在進入事件地平面後所看到的黑洞內部會稍有不同,因為時間尺度在我們的座標系統與陷縮星表面的座標系統之間有極大的差異。從外部看,會發覺恆星的核心越來越接近其事件地平面,而且速度越來越慢,直到最後它似乎停止收縮並完全變暗,核心收縮的速度慢到似乎數十億年才收縮幾公分。此時,如果我們在火箭中衝向黑洞,我們會發現整個星球的表面完全在事件地平面之內,被奇異點吞沒。



-------------------- -------------------- -------------------- --------------------


黑洞內部能量:

由於黑洞的特性就是吞噬了一切東西(包括光),因此,黑洞裡面可能蘊藏著大量能量,甚至人們也感興趣,有沒有從黑洞中提取能量的可能方式呢?為此,必須進一步對自轉黑洞進行分析,且討論一項黑洞的基本物理性質──角動量。我們都知道,各種天體都在旋轉,黑洞應該也不例外,旋轉會使天體有角動量。由於封閉系統的總角動量守恆,當恆星塌縮時,自轉應加遽,一顆新的中子星每秒可旋轉一千多次,進一步塌縮成黑洞,旋轉速度應更快,這是不可避免的,因此,在討論黑洞時應考慮到它的自轉與角動量。自轉黑洞仍然存在著逃離速度為光速的「史瓦西半徑」,但它外面一定範圍的空間也將隨著黑洞一起像剛體那樣旋轉,這個與黑洞一起旋轉的空間稱為黑洞的「工作層」,工作層熱外邊緣稱為「靜止極限」。進入工作層的物體,將隨黑洞一起高速旋轉,獲得很大的能量和角動量,但由於還在史瓦西半徑之外,所以只是黑洞的半捕獲物,既有可能進一步進入史瓦西半徑內被捕獲,也有可能在特殊的條件下越出工作層,先進入然後又越出工作層的物體,由於進入後隨黑洞一起轉動附加了能量,因而越出時將帶走附加的能量。換言之,黑洞的一部份能量和角動量轉移到了物體上,並被它帶走,這就是從黑洞提起能量的一種可能方式。當然,從自轉黑洞提取能量的過程並不是無限制的,就像宏關過程都要遵循熱力學中的熵增加原理一樣,從自轉黑洞提取能量必須保持黑洞的表面積不變而減少其質量。理論計算表明,我們可以把一個自轉黑洞總能量的百分之30擠出來,辦法是小心地把物體送入工作層,帶它們越出後再收集起來,如果能實現的話,黑洞就會失去它的自轉能量只剩下質量,從而靜止極限與史瓦西半徑重合,這時黑洞就「死」了,再也不能直接產生能量了。有趣的是,經過計算,從一個質量為108M⊙的黑洞中可以提取的最大能量為6*1055焦耳,這似乎正是活躍星系或似星所需要的能量。另外一方面也重要的,一般認為黑洞就是吞噬,不可能發出任何東西。但是1974年霍金(Hawking)的最新研究報告,情況可能不完全如此。霍金指出,物質─反物質對(意即正、反粒子對)經過黑洞附近時,可能一個掉入黑洞,而同時將另一個排出黑洞,這意味著黑洞能夠產生和發射一些粒子,以微觀的奇特方式穩定地往外“蒸發”粒子,有了這種“蒸發”,黑洞就不再絕對是“黑”的了,黑洞也將會在長時間內逐漸被蒸發掉。霍金還證明,每個黑洞都有一定的溫度,黑洞越大,溫度越低,蒸發也越微弱,黑洞越小;溫度越高,蒸發越強烈。小黑洞由於蒸發,質量就會迅速減小;質量小了,溫度就變得更高;溫度高了,蒸發又進一步更快........這樣下去,黑洞的蒸發就變得越來越激烈,最後終於以猛烈的爆發而告終,這就是不斷向外噴射物質的白洞了。不過這種說法,有沒有白洞?目前還是持保留態度,必須尋找更多天文觀測證據才能確定。





參考資料:
http://tw.knowledge. yahoo.com/question/? qid=1405101402717
2008-01-28 5:30 am
甚麼是黑洞
黑洞是一個時空的黑暗區,由一些質量頗大的星體經重力塌縮後所剩餘的東西,是一個重力極大的天體。視界內任何物質都不能從裡面跑來,甚至是光都不例外,所以是一顆渿黑的天體,因而得名為黑洞。因為無法從可見光這途徑看到黑洞,所以只能以被黑洞吸引掉落其上的物質所釋放的輻射來確定它們的存在。
黑洞


黑洞的形成
當一顆質量相當大的星體的核能耗盡後(巨大的恆星:質量是太陽質量的八倍以上)死亡時,恆星的殘骸可能會形成黑洞。而黑洞的形成是因為大質量的恆星在演化的未期都會發生超新星爆炸,沒有輻射壓力去抵抗重力,平衡態不再存在,這星體將全面塌縮,成為中子星。若其中子星的總質量大於三倍太陽的質量,那麼連中子簡併氣體壓力也不能平衡重力,星體將塌縮至它的重力半徑範圍之內。這時,引力之大足以使一切粒子,都被引回星體本身,不能逃脫。


黑洞的界限
當一個黑洞形成後,塌縮還會進行下去,所有物質會無可避免,所有質量將集中在一個非常細小的質點,稱為奇點。黑洞的表面層稱為事件穹界。而這表面層和中心奇點的距離就是史瓦半徑。任何物質要從黑洞的史瓦半徑跑到外面去,它的逃離速度便要大於光速。但根據狹義相對論,光速是速度的極限。重力龐大得連光線也逃不出去,這個連光線也逃不出去的面,稱為事相面。光線和任何物質都只能從事相面外部進入其內部,而無法從裡邊逸出。這個事相面的裡邊就是黑洞。


探索的黑洞
黑洞不發光,所以是不可能用天文望遠鏡規測得到的。但根據理論,當周圍的物質被吸引時,就會透露出黑洞的存在。如果一對雙星中的伴星是黑洞,那麼主星的物質被吸引向黑洞而形成一個吸積環。當吸積環的物質被吸入黑洞時,因摩擦而引起高溫,而放出X光線。於是我們就能將重點放於X射線密近雙星上。
黑洞的誕生
當一顆質量相當大的星體的核能耗盡後,沒有輻射壓力去抵抗重力,平衡態不再存在,這星體將全面塌縮,成為中子星。若其質量仍大於三個太陽質量時,那麼連中子簡併氣體壓力也不能平衡重力,星體將斷續塌縮至它的重力半徑(rg)範圍之內;這時,引力之大足以使一切粒子,包括光子,都被引回星體本身,不能外逸。這就形成黑洞。

黑洞是一個時空的黑暗區,由一些質量頗大的星體經重力塌縮後所剩餘的東西。它的基本特徵是有一個封閉的視界。這視界就是黑洞的邊界,一切外來的物質和輻射可以進入這視界以內,但視界內任何物質都不能從裡面跑出來。

如我們把一顆石塊向上拋,它會很快跌回地面,我們用點勁拋,它會飛得高一點;假若再加把勁,令石塊向上速度達逃逸速度,它便會直衝出宇宙,一去不返。

恆星質量越大,體積越小,引力的羈絆便越大,所需逃逸速度亦越高。另一方面,愛恩斯坦的相對論斷言宇宙中最高的速度便是光速,所以如所需的逃逸速度大於光速,那麼宇宙中包括光在內的一切都不可能逃離引力的魔掌,這顆恆星便成為黑洞。

不了解廣義相對論,便不能真正了解黑洞。廣義相對論的中心思想是質量會扭曲其附近的時空,質量越大,影響越明顯。牛頓力學認為月球繞地球旋轉,是因為月球受到地球引力的吸引;但廣義相對論的說法則是地球的質量扭曲了附近的時空,月球在不平坦的時空以最自然的方式運行,結果走出了一條繞著地球轉的曲線,情況就如彈珠在不平坦的地面走,會左搖右擺一樣。同樣道理,光線在通過大質量物質 近時,亦不會以直線運行。

重力半徑又稱史瓦半徑 Schwarischild Radius,它只與體的質量成正比。

黑洞是引力極強之地,光線路徑扭曲的程度,足以令光線無法逃跑。在黑洞附近,光線(包括宇宙所有其他物質)能否逃離的分水嶺稱為事件穹界。為甚麼叫事件穹界呢?原因很簡單,由於在事件穹界之內的一切皆不能逃離,所以在這個界限以內發生的一切,將永遠不能為人所知,事件穹界便是事件能為人所探知的極限。對於一個史瓦西黑洞﹐即一個並不自轉和不帶電的黑洞﹐事件穹界的半徑稱為史瓦西半徑(RS),數值的大小只取決於黑洞的質量。

R S = 2 G M / c 2

公式中的M是黑洞的質量,G是引力常數,c是光速。太陽質量的黑洞的史瓦西半徑約為3公里。在史半瓦西半徑以內的範圍,被定義為黑洞所佔有的空間。

我們稱黑洞中心為奇點,很多人以為奇點是一個半徑等於零但密度無限大的地方。其實,比較正確的說法是我們根本不知道那裡是甚麼一回事,因為我們所知的一切物理定律根本不適用於情況如此極端的地方。

在事件穹界之外,有一個稱為光子球層的球狀區域。在這裡,只要光線是以切線方式擦過光子球層,便會被黑洞引力俘獲,沿著這球層像衛星一樣永遠繞著黑洞旋轉。黑洞的可怕引力會隨著距離遞減,事實上假若我們的太陽突然變成一個黑洞,地球並不會感到太陽的引力有甚麼不同,仍舊會依著同一軌道繞著太陽旋轉。

假若有人跌進了黑洞,會發生甚麼事呢?首先,如你在遠處看著這個不幸的太空人,你會發覺開始時就如一切向下跌的物體一樣,他跌進黑洞的速度會越來越快,當他接近黑洞,奇怪的事開始發生,你會發覺他開始減速,越接近事件穹 ,他的速度便越慢,一切變得像慢動作影片,最後更彷似停留不動,永遠不能到達事件穹界!

但對這個不幸的太空人來說,情況便完全不同。當然我們先要假設這個太空人有超人般的身體,不會被黑洞的引力殺死。當他越來越接近黑洞,黑洞看來會越來越大,更開始包圍著他﹐只剩太空船的尾窗仍可看到一角宇宙,但除此之外,倒沒有甚麼特別,之後在極短極短的時間之內,他便會撞上黑洞的奇點。

旋轉黑洞
旋轉黑洞又稱為克爾黑洞,它們的特性和以上所說的靜止黑洞很不同。旋轉黑洞有外內兩個事件穹界,而它們 之間的區域稱為能層。在能層內的物質會被黑洞自轉所帶動,但仍有機會逃離黑洞的魔掌。內事件穹界才是真正的死亡線,一旦進入便永無翻身之日。

理論上,我們是可以從黑洞中搾取它的自轉能。方法是把一件物體放進能層,然後把物體分成兩部分,讓一部分墮進黑洞,另外一部分逃離黑洞﹐若我們適當地選擇它們的質量、分離的時間等等﹐便可以讓逃離的部分以更高速度(即更高能量)離開黑洞。或者在茫茫宇宙,確有先進的天外文明,利用這個方法抽取黑洞的能量呢!

尋找黑洞

理論上,我們永遠看不到黑洞,但這不表示我們沒有辦法找到它們。普遍原則是找一些黑而密度高的物體。在事件穹界之外,開普勒定律仍勉強適用。我們可以量度繞著懷疑黑洞轉的氣體的速度,然後利用開普勒定律,計算出中心物體的質量下限。假若質量超過三個太陽質量,而且它非常細小又漆黑一片,我們便很有理由相信這是黑洞。

通常,黑洞會被吸積盤所環繞,兩極更有噴流。當物質流入黑洞,會發射出強烈的X射線。找尋這些X射線源亦是尋找黑洞(或中子星)的重要方法。

天鵝座X-1便是最早發現的懷疑黑洞。這物體的伴星是一顆O型星,質量下限是七個太陽質量,並會放射出X射線。一切證據都顯示它極有可能是黑洞。

非星體黑洞

理論上,黑洞是沒有質量上限的。它們可以超乎想像的大和重,我們稱這種黑洞為特大質量黑洞。我們在不少星系中心都找這種黑洞。例如在M87星系的核心內便有一個質量為3x109個太陽質量,但直徑只有數光星期之內的物體,只有黑洞才可能這麼重而同時又這麼細小。

「黑洞沒有毛髮」原理:十年之前,我們相信黑洞是一個很簡單的物體,三個物理參數─質量、角動量(如要求不嚴謹,可把它看成為自轉速度)和電荷─便決定了它的一切,兩個黑洞只要它們這三個參數相同,物理特性便完全一樣,黑洞最初由甚麼物質所造成是無關宏旨的,由於黑洞是這樣「單純」,光禿禿沒有甚麼特徵,所以天文學家謔稱「黑洞沒有毛髮」。對於真正的黑洞,由於它的強大引力足以離子化附近的物質,然後把自己中和,所以應該沒有黑洞是帶電的。但我們最近發現,在非常特殊的條件下,黑洞可能有其他可觀測的物理特性,由於這牽涉高深物理,在這裡不再作進一步的探討。

霍金蒸發:到目前為止,我們不斷強調事件穹界是一條不歸路。但真的沒有東西可逃出黑洞嗎?著名英國天文學家霍金得出了一個驚人的結論,他發現理論上黑洞亦會如普通黑體一樣發出輻射,這便是霍金蒸發理論。原來黑洞亦有溫度,而它的溫度和它的質量成反比,即質量越大,溫度越低。普通星體所形成的黑洞的溫度低至根本無法量度,但只要我們能夠找到小型黑洞,其蒸發過程卻是可以觀測得到的。

小型黑洞:到目前為止,所談及的黑洞形成機制只能產生質量大於太陽質量三倍的黑洞。我們相信小型黑洞只能在宇宙初開頭一秒內的極端環境下誕生,現在仍有小型黑洞存在嗎?理論上是可能的,但目前仍是疑案。

黑洞的歸宿:若黑洞會產生輻射,它便會逐漸失去質量,當所有質量皆蒸發掉時會發生甚麼事?我們不知道,科學家仍需努力。

蟲洞:在科幻小說裡,我們經常可以看到作者用蟲洞作為連接宇宙兩處地方的捷徑。小說中的英雄只要走進蟲洞,便可瞬間穿梭時空。到目前為止,蟲洞只存在於理論當中,作為時空隧道它有極大的缺點,它的兩個出口皆是黑洞!當勇敢的太空人穿越蟲洞後,他會發覺自己被困在另一個黑洞中,他或許可在剎那間看到宇宙另一處的景像,但會立即撞進奇點而死亡。

圖中為黑洞從星體形成的過程中,外層經過爆炸而出現塵,大量的塵在黑洞形成後仍會以高速在黑洞外盤旋,這對天文者定位黑洞很重要,而這些塵和分子有時稱作accretion disk.




黑洞的參數
要了解一顆星體,我們需要很多參數,但當它塌縮成為一個黑洞,任何物質都不能逃離它,因此我們是無法觀測到任何有關它的信息。根據研究,只有三個基本參數,質量、電苛和旋轉,我們才能在遠距離探測到,這就是"黑洞沒有毛髮"定理。

理論上,黑洞可按積分成小、中和大三類,已有好些証據顯示,中型黑洞是大星體在其生命終結時,星體內陷和坍塌後所留下的遺骸,而大型黑洞則存在於很多星系中,可能包括我們身處的星系。

黑洞的界限

當一個黑洞形成後,所有物質都會向中心場縮成高一個非常細小的質點,稱為奇點 Singularity,黑洞的表面層稱為”事件穹界”Event Horizon。而這表面層和中心奇點的距離就是史瓦半徑。任何物質要從黑洞的史瓦半徑跑到外面去,它的逃離速度 Escape Velocity便要大於光速。但根據狹義相對論,光速是速度的極限,因此,一切物質到了事件穹界便扯向中心的奇點,永不能逃出來。

黑洞的存在

於1990年4月27日,哈勃太空望遠鏡 Hubble Space Telescope的啟用,為人類探索太空夫揭開了新的一頁,雖然在製造時出了錯誤,使影像大打折扣,可是仍對天文學有莫大的貢獻。近來人類對一直只是存在於理論範疇內的黑洞,已透過哈勃太空望遠鏡,有了進一步的証據。於仙女座大星系M31附近的M32發現了一個質量大於太陽三百萬倍的黑洞。M32是在我們的銀河系附近,距離地球2.3百萬光年的星系。它是人類所知密度最高的星系,於直徑只有一千光年的範圍內(我們的銀行河系直徑約十萬光年),包含了四百萬顆星,中心和密度是我們的銀河系100個一百萬倍左右。假設你生活於M32中心的行星上,你會見到一個密佈星光的夜光,光度比一百倍滿月還要亮。科學家是由星星於該星系的活動,及其中心密度而推測的。此星系內之星星移動速度較之於一般星系每秒快了100公里。對於此發現,實對各天文學者的一大鼓舞,相信以後哈勃望遠鏡,必能為人類揭開更多太空的神秘之謎。
2008-01-27 4:33 am
甚麼是黑洞?
黑洞是一個大質量恆星死去後的殘骸,是一個重力極大的天體。
黑洞內任何物質都不能從裡面跑出來,甚至是光都不例外,所以是一顆渿黑的天體,因而得名為黑洞。

黑洞之始篇——黑洞的形成
當一顆質量相當大的星體的核能耗盡死亡時,恆星的殘骸可能會形成黑洞,而黑洞的形成是因為大質量的恆星在演化的未期都會發生超新星爆炸。
當恆星核的燃料耗盡,核反應停止,沒有任何力足以去抵抗引力,平衡態不再存在,這星體將全面塌縮,成為白矮星,這是其中一種致密態,這種是以泡利不相容原理,電子(費米子的一種)便產生出一種巨大的內部量子壓力,阻止了粒子繼續壓縮;
根據推算,白矮星不能支持大於太陽1.4倍(原恆星質量為太陽質量的十倍)的質量,如果大於這臨界值,泡利不相容原理所產生的排斥力已不能再抵抗引力,恆星便可以違背泡利不相容原理繼續壓縮下去,形成中子星——以中子之間的電磁力來阻止收縮;
但若超新星爆炸後殘骸的總質量大於三倍太陽的質量,那麼連中子之間的電磁壓力也不能平衡重力,星體將塌縮至它的重力半徑範圍之內。
這時,引力之大足以使一切粒子,都被引回星體本身,化為體積為零的點——奇點,再也不能逃脫。
有些黑洞是在宇宙形成時亦跟著形成的,這些黑洞稱為原初黑洞,這些黑洞的質量可以很低,在黑洞之消逝篇會向大家解釋。

黑洞之結構篇——黑洞的邊界和內部空間
當一個黑洞形成後,塌縮還會進行下去,所有物質會無可避免,所有質量將集中在一個體積為零的質點,稱為奇點。
黑洞的表面層稱為事件穹界(視界),而這表面層和中心奇點的距離就是史瓦西半徑。
任何物質要從黑洞的史瓦西半徑跑到外面去,它的逃離速度便要大於光速。但根據狹義相對論,光速是速度的極限。
重力龐大得連光線也逃不出去,光線和任何物質都只能從視界外部進入其內部,而無法從裡邊逸出。
這個視界的裡邊就是黑洞,所以視界便是黑洞大小的邊界象徵。

黑洞之種類篇——黑洞無毛?
目前公認的理論認為,黑洞只有三個物理量有意義:質量、電荷、角動量(轉速)。
也就是說:對於一個黑洞,一旦這三個物理量確定下來了,這個黑洞的特性也就確定了,這稱為黑洞的無毛定理。
由於黑洞一定有質量,所以可造成不同類形黑洞的因素只有電荷和角動量,黑洞因而可以只分為四類:
沒有旋轉和沒有電荷的黑洞:史瓦西黑洞,這是一種理想化的黑洞,實際上應該沒甚麼可能會出現;
有旋轉但沒有電荷的黑洞:克爾黑洞,這種黑洞應該最為普遍,因為星體的收縮會加速旋轉,而大部分星體都會自轉,所以會自轉的黑洞也應該也很多;
沒有旋轉但有電荷的黑洞:帶電黑洞,雖然黑洞保留部分原恆星電荷,但由於黑洞可以在很短的時間裡捕獲足夠另一電荷的粒子而成為電中性,所以一個這種黑洞的電量亦小至可以完全忽略其天體物理效應;
有旋轉和電荷的黑洞:克爾-紐曼黑洞,由於電荷的影響極微,所以它亦可看作克爾黑洞來處理。

黑洞之消逝篇——黑洞會蒸發
因為宇宙的擴張,溫度便會下降,根據熱力學,溫度較高的物體的能量會流向溫度較低的物體。
由於黑洞也有溫度,根據量子力學的測不準原理,黑洞的質量會慢慢地以霍金輻射的形式離開黑洞,黑洞便會縮小和減少質量,所以當黑洞中的所有物質都離開了黑洞後,黑洞便會消失。
以現今的宇宙整體溫度來說,只有質量小於月球的黑洞才能散失能量,而其他黑洞都是在吸收宇宙的能量而增大自己的尺度。

黑洞之死亡篇——黑洞的消失
黑洞蒸發到後期會加速進行,以至於在一次像是猛烈的放射後消失殆盡。
黑洞的其中一個性質是溫度和質量成反比。
當黑洞的質量去到小行星那麼低時,溫度便有6000度,並放出可見光;
當黑洞的質量去到十億噸(大約為一座山的質量)時,大小只有一個質子般,溫度便高於10^12度,這時的輻射便是由伽瑪射線光子和大質量基本粒子混合組成;
當黑洞的質量去到很低時,黑洞便會以劇烈的爆發來了結自己的生命,而它在最後0.1秒裡釋放的能量相當於一百萬顆百萬噸級氫彈

2008-01-26 20:34:58 補充:
黑洞是根據現代的物理理論和天文學理論,所預言的在宇宙空間中存在的一種天體區域。黑洞是由一個質量相當大的天體,在核能耗盡死亡後發生引力塌縮後形成。根據牛頓萬有引力定理,由於黑洞的第一宇宙速度過大連光也逃逸不出來,故名黑洞.在此區域內的萬有引力非常強大,任何物質都不可能從此區域內逃逸出去,甚至光線都被它強大的引力拉回,因此黑洞不會發光,不能用天文望遠鏡看到,是黑漆漆的天體,但天文學家可藉觀察黑洞周圍物質被吸引時的情況,找出黑洞位置。

2008-01-26 20:36:18 補充:
根據史瓦茲解,如果一個重力天體的半徑小於一個特定的值,天體將會發生坍塌,這個半徑就叫做史瓦茲半徑。在這個半徑以下的天體,其間的時空彎曲得如此厲害,以至於其發射的所有射線,無論是來自什麼方向的,都將被吸引入這個天體的中心。因為相對論指出任何物質都不可能超越光速,在史瓦茲半徑以下的天體的任何物質——包括重力天體的組成物質——都將塌陷於中心部分。一個有理論上無限密度組成的點組成重力奇點(gravitational singularity)。由於在史瓦茲半徑內連光線都不能逃出黑洞,所以一個典型的黑洞確實是「黑」的。
2008-01-27 4:17 am
一個星體死左~大爆炸後就會型成
唔洗睇多野都答到你la= ="


收錄日期: 2021-04-14 18:48:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080126000051KK03201

檢視 Wayback Machine 備份