✔ 最佳答案
提示:整除:| n - 14 | = k.| n^3 - 2 |,k εN U { 0 }
1.在 k = 0 時
| n - 14 | = 0.| n^3 - 2 | = 0
n=14 ........................................................ n =14
2. 在 k > 0 時
(1). 當 n > 14 時
n – 14 = k.( n^3 - 2 )
Let f(x) = k ( x^3 – 2 ) - x + ( 14 – 2 k) , xε( 14 , ∞ )
f ‘ (x) = 3k.x^2 – 1 > 0;因為 k > 0 => f 遞增
f(x) > f(14) = 0 ; 此區無 0 函數
(2). 14 > n > 3√2 時
14 - n = k ( n^3 - 2 )
k. n^3 + n - ( 14 + 2 k ) = 0
Let f(x) = k x^3 + x - ( 14 + 2 k ),xε(3√2 , 14 ) ; note: 3√2 是 2 的 1/3 次方
f ' ( x ) = 3k.x^2 + 1 > 0 ;因為 k > 0 => f 遞增
當 n=2 時 ; 2 = min { n > 3√2,nεN }
f ( 2 ) = 8 k + 2 - (14+2k) = 6 k - 12 = 6 ( k - 2 ) ; 可因數分解
令 f(2) = 0 , 得 k = 2 ......................................... n = 2
因為f 遞增,所以
當 14 > x > 2:f(x) > f(2) =0 ; 此區無 0 函數
(3) 3√2 > n > 0 時
此區只有一整數:1
| 1 - 14 | = 13
| 1^3 - 2 | = 1
=> k =13 / 1 = 13 ..................................................... n = 1
(4) n <= 0 時
14 – n = k.( 2 - n^3 )
Let f(x) = k ( 2 – x^3 ) + x -14
f ‘ (x) = -3 k.x^2 + 1
(a) 0 >= x > - 1 / √(3k) 時 , f ‘ > 0 ; 遞增
f(0) = 2k – 14 = 2 ( k – 7 ) ; 可因數分解
令 f(0) = 0 , 得 k = 7 ......................................... n = 0 ( 不符,因為 n 為 正整數 > = 1 )
所以
當0 > x > - 1 / √(3k):f(x) > f(0) = 0 ; 此區無 0 函數
(b) x < - 1 / √(3k) 時 , f ‘( x) < 0 ; 遞減
max { n < - 1 / √(3k),nεZ } = - 1
f ( - 1 ) = k ( 2 – (-1) ) – 1 – 14 = 3 k – 15 = 3 ( k – 5 ) ; 可因數分解
令 f(-1) = 0 , 得 k = 5 ......................................... n = -1 ( 不符,因為 n 為 正整數 >= 1 )
所以
當 x < -1: f(x) < f(0) = 0 ; 此區無 0 函數
由上述知
在 n = 1、2、14 時,n-14 可被(n^3-2)整除 #
note :
n= 1: n – 14 = - 13 ,n^3-2 = -1 => -13 / -1 = 13
n= 2: n – 14 = - 12 ,n^3-2 = -6 => -12 / -6 = 2
n= 14: n – 14 =0 ,n^3-2 = 2742 => 0 / 2742= 0