F.4 附加數學 - 二倍角公式

2008-01-24 6:29 am
化簡下列各式:

1. 若sinA= 1/3 且A是銳角 , 試求 cosA + cos2A / 1 + sinA + sin2A 的值

請詳述步驟

Ans: ( 9 + 11√2 ) ∕ 28

回答 (2)

2008-01-24 7:19 am
✔ 最佳答案
Q: 若 sinA = 1/3 且 A 是銳角, 試求 (cosA+cos 2A )/(1+sinA+sin 2A ) 的值
Sol:
sinA = 1/3
sin2A = 1/9
1 - cos2A = 1/9
cos2A = 8/9
cosA = ± 2√2/3 ( cosA = - 2√2/3 rejected )
( cosA + cos 2A ) / ( 1 + sinA + sin 2A )
= ( cosA + 2cos2A - 1 ) / ( 1 + sinA + 2sinAcosA )
= ( 2√2/3 + 2 * 8/9 - 1 ] / ( 1 + 1/3 + 2 * 1/3 * 2√2/3 )
= ( 6√2/9 + 7/9 ) / ( 12/9 + 4√2/9 )
= ( 6√2 + 7 ) / ( 12 + 4√2 )
= ( 6√2 + 7 ) ( 12 - 4√2 ) / [( 12 + 4√2 ) ( 12 - 4√2 )]
= ( 72√2 + 84 - 48 - 28√2 ) / ( 144 - 32 )
= ( 36 + 44√2 ) / 112
= ( 9 + 11√2 ) ∕ 28
Ans: ( 9 + 11√2 ) ∕ 28
2008-01-24 6:40 am
由於sinA= 1/3 且A是銳角

cosA = √8/3
(cosA + cos2A) / (1 + sinA + sin2A)
= (cosA+1﹣2sin2A)/(1+sinA+2sinAcosA)
= [(√8/3) + 1﹣2(1/3)2]/[1+(1/3)+2(1/3)(√8/3)]
= [(√8/3)+(7/9)]/[(4/3)+(2√8/9)]
= (6√2+7)/(12+4√2)
= (6√2+7)(3﹣√2)/4(3+√2)(3﹣√2)
= ( 9 + 11√2 ) / 28

2008-01-23 22:41:52 補充:
cos2A = 1﹣2sin²Asin2A = 2sinAcosA

2008-01-23 23:40:44 補充:
先求cosA,有2種方法:你可以畫一直角三角形,用畢氏定理計或利用1﹣cos²A = sin²A 計得出cosA = √8/3後,將cosA和sinA代入此式(cosA+1﹣2sin²A)/(1+sinA+2sinAcosA)將(6√2+7)/(12+4√2)有理化,得出( 9 + 11√2 ) / 28 答案。

2008-01-23 23:46:07 補充:
補充一點:(6√2+7)/(12+4√2)= (6√2+7)/4(3+√2)= (6√2+7)/4(3+√2)×(3﹣√2)/(3﹣√2)= (18√2﹣12+21﹣7√2) / (36﹣12√2 + 12√2﹣8)= ( 9 + 11√2 ) / 28


收錄日期: 2021-04-24 09:47:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080123000051KK03940

檢視 Wayback Machine 備份