F.4 附加數學 - 二倍角公式

2008-01-24 6:10 am
化簡下列各式:

1. 若sinA= 1/3 且A是銳角 , 試求 cosA + cos2A / 1 + sinA + sin2A 的值

回答 (3)

2008-01-24 7:00 am
✔ 最佳答案
Q: 若 sinA = 1/3 且 A 是銳角, 試求 (cosA+cos 2A )/(1+sinA+sin 2A ) 的值
Sol:
sinA = 1/3
sin2A = 1/9
1 - cos2A = 1/9
cos2A = 8/9
cosA = ± 2√2/3 ( cosA = - 2√2/3 rejected )
( cosA + cos 2A ) / ( 1 + sinA + sin 2A )
= ( cosA + 2cos2A - 1 ) / ( 1 + sinA + 2sinAcosA )
= ( 2√2/3 + 2 * 8/9 - 1 ] / ( 1 + 1/3 + 2 * 1/3 * 2√2/3 )
= ( 6√2/9 + 7/9 ) / ( 12/9 + 4√2/9 )
= ( 6√2 + 7 ) / ( 12 + 4√2 )
= ( 6√2 + 7 ) ( 12 - 4√2 ) / [( 12 + 4√2 ) ( 12 - 4√2 )]
= ( 72√2 + 84 - 48 - 28√2 ) / ( 144 - 32 )
= ( 36 + 44√2 ) / 112
= ( 9 + 11√2 ) ∕ 28
Ans: ( 9 + 11√2 ) ∕ 28
Send me a letter if any steps you don’t understand.
參考: 數學小頭腦
2008-01-24 7:02 am
sinA=1/3
cos²A=1-(1/9)
cos²A=8/9
cosA=2(sqrt2)/3
(cosA + cos2A) / (1 + sinA + sin2A )
=(cosA+cos²A-sin²A)/(1+sinA+2sinAcosA)
=[2(sqrt2)/3+(8/9)-(1/9)]/[1+(1/3)+2(1/3)(2sqrt2)/3]
=[(6sqrt2+7)/9]/[(12+4sqrt2)/9]
=(6sqrt2+7)/4(3+sqrt2)
=(6sqrt2+7)(3-sqrt2)/4(3^2-2)
=(11sqrt2+9)/28
2008-01-24 6:17 am
sinA= 1/3
sinA=k/3k
y=k, r=3k
cosA =x/r=k(10)^0.5/3k=(10)^0.5 / 3

(cosA + cos2A) / (1 + sinA + sin2A )
=(cosA+cos^2A-sin^2A)/(1+sinA+2sinA cosA)
=[(10)^0.5+3]/[4+(10)^0.5]


收錄日期: 2021-04-24 01:14:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080123000051KK03825

檢視 Wayback Machine 備份