Amath問題(M.I.)

2008-01-23 5:59 am
a.證明 1^2+2^2+...+n^2=[n(n+1)(2n+1)]/6

(a部已證明,可不用解釋)

b.利用(a)的公式,找出
1x2+2x3+...+n(n+1)
我就一直做
做到
(1^2+2^2+...+n^2)+(1+2+...+n) 開始唔識做
睇題解
下一步係=[n(n+1)(2n+1)]/6+[n(n+1)]/2
我就係唔明[n(n+1)]/2點黎
麻煩各位解答解答

回答 (2)

2008-01-23 6:10 am
✔ 最佳答案
1 + 2 + ... + n is an A.P. where the 1st term is 1 and common difference is 1, so
T ( n ) = a + ( n - 1 )( d )
= 1 + ( n - 1 )( 1 )
= n
Then S ( n ) = ( 1st term + last term )( no. of terms ) / 2
= ( 1 + n )( n ) / 2
Referring to your question,
1 x 2 + 2 x 3 +...+ n (n + 1 )
=1 x ( 1 + 1 ) + 2 ( 2 + 1 ) + ... + n ( n + 1 )
= ( 1^2 + 2^2 + ... + n^2 ) + ( 1 + 2 + ... + n )
= n ( n + 1 )( 2n + 1 ) / 6 + n ( n + 1 ) / 2
= n ( n + 1 )( n + 2 ) / 3


2008-01-22 22:23:07 補充:
Thank you for inviting me to answer this question.
參考: My Maths Knowledge
2008-01-25 8:09 pm
[n(n+1)]/2是連續數之和的公式=1+2+3+...+n
[項數(n)]*([尾項(n)]+[頸項(1)])/2
([尾項(n)]+[頸項(1)])/2=中間數

2008-01-25 12:15:07 補充:
不是(頸)項, 應該是首項
參考: me


收錄日期: 2021-04-11 21:54:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080122000051KK07353

檢視 Wayback Machine 備份