問數~關於空間幾何~

2008-01-18 3:51 am
長方形紙片ABCD,AB=4,BC=7,在BC邊上任取一點E,把紙片沿AE折成直二面角,
問E點取何處時,使折起後兩個端點B,D之間的距離最短?

回答 (2)

2008-01-18 7:15 am
✔ 最佳答案
Let angle BAE=t, drop a perpendicular from B to AE and let the intersection of be F. Let BF prolonged (before folding) to meet AD (or AD prolonged) at G.
Then BF=AB(sin t)=4sin t, FG=(4cos t)/(tan t), AG=4/tan t.
Fold up along AE, then the 二面角 = angle BFG, and write the cosine of this angle as k.
consider triangle BFG, by cosine law
BG^2=BF^2+FG^2-2BFxFGcos(angle BFG)
= 16sin^2 t+(16cos^2 t)/(tan^2 t) -32kcos^2 t

consider triangle BAG,
cos(angle BAG)=(AB^2+AG^2-BG^2)/(2ABxAG)
=(16sin^2 t + 16/tan^2 t -(16sin^2 t+(16cos^2 t)/(tan^2 t) -32kcos^2 t )) / (32/tan t)
=(1/tan^2 t - cos^2 t/ tan^2 t + 2kcos^2 t) / (2/tan t)
=(sin^2 t/tan^2 t +2kcos^2 t) / (2/tan t)
=(cos^2 t + 2kcos^2 t)(tan t) / 2
=((1+2k)/2) sin t cos t

consider triangle BAD
BD^2=AB^2+AD^2-2ABxADcos (angle BAG) (note angle BAG=angle BAD)
= 16+49-56(((1+2k)/2) sin t cos t)
=65-28(1+2k)sin t cos t
=65-14(1+2k)sin(2t)

For a fixed 二面角, k is fixed, and BD is minimum (i.e., BD^2 is minimum) when sin(2t) is maximum. The maximum attains when sin(2t)=1, so t=45 degree.

Hence, when BD is minimum, BE=ABtan t=AB=4.

Remark: in fact, the answer does not depend on the value of the 二面角.

2008-01-17 23:21:19 補充:
如果不需要嚴格證明,有一個更簡單的方法去計。當紙片沿AE折至完全重疊時,(即兩面角=0),B點和ACD在同一個平面上,考慮三角形ABD,跟據三角不等式BD >= AD-AB=3,最小值當ABD三點組成同一直線時發生。要折疊後B點在AD線上,則角BAE必須是45度,所以BE=AB=4.
2008-01-18 4:20 am
E係BC中間.....


收錄日期: 2021-04-13 14:58:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080117000051KK03108

檢視 Wayback Machine 備份