✔ 最佳答案
I got a solution , but it's in sin. . .
2 (cos^2)x = 1 + sin x
2 - 2(sin^2)x = 1 + sin x <------ sin^2 x + cos^2 x = 1
rearranging the equation,
1 - 2 (sin^2)x - sin x = 0
removing the negative sign,
2 (sin^2)x + sin x - 1 = 0
factorisation,
( 2 sin x - 1 ) ( sin x + 1 ) = 0
so
sin x = 1/2 or sin x = -1
if 0 degree < x < 360 degree
x = 30 degree , 150 degree or x = 270 degree
2008-01-17 14:19:39 補充:
i am sorry, in the above solution, 270 degree should be rejectedi have just think of a way using cosine to ans the ques.2 (cos^2)x = 1 + sin x2 - 2(sin^2)x = 1 + sin x 〈------ sin^2 x + cos^2 x = 11 - 2 (sin^2)x = sin x2(cos^2)x - 1 = sin x
2008-01-17 14:20:05 補充:
squaring both side,[ 2(cos^2)x -1 ]^2 = (sin^2)x[ 4(cos^4)x - 4(cos^2)x +1 ] = 1 - (cos^2) x4 (cos^4)x - 3(cos^2)x = 0[ (cos^2)x ] [ 4(cos^2)x - 3 ] = 0(cos^2) x = 0 or (cos^2)x = 3/4 cos x = 0 or cos x = (root 3) / 2 , - (root 3) / 2
2008-01-17 14:20:18 補充:
if 0 deg. 〈 x 〈 360 deg. x = 90 deg. (rej.), 180 deg. (rej.) or x = 30 deg., 150 degree, 210 deg. (rej.), 330 deg. (rej.)<--- sub the result into the original equation, and these results do not stand