Integral Calculus
Q1 : ∫ x sin(x^2)dx
Q2 : ∫(x+1)(lnx+3)dx
how to do it
回答 (4)
參考: My Pure Maths knowledge
Q1.
∫ x sin(x^2)dx
=∫ sin(x^2)(1/2dx^2)
=1/2∫ sin(x^2)d(x^2)
=-1/2(cos(x^2))+C
Q2.
∫(x+1)(lnx+3)dx
=∫[3(x+1)+x.lnx+lnx]dx
=∫3(x+1)dx + ∫x.lnxdx+∫lnxdx
=(3x^2/2 + 3x + C1) +∫x.lnxdx + ∫lnxdx
=(3x^2/2+3x+C1)+1/2∫lnxdx^2 +∫lnxdx
=(3x^2/2 + 3x + C1) +1/2[x^2.lnx-∫x^2dlnx] +[ x.lnx-∫xdlnx]
=(3x^2/2 + 3x + C1) +1/2(x^2.lnx -∫xdx)+[x.lnx -∫dx](because dlnx/dx=1/x)
=(3/2)x^2 + 3x + (1/2)x^2.lnx - (1/4)x^2+ x.lnx -x + C
Q1.
∫ x sin(x^2)dx
=∫ sin(x^2)(1/2dx^2)
=1/2∫ sin(x^2)d(x^2)
=-1/2(cos(x^2))+C
Q2.
∫(x+1)(lnx+3)dx
=∫[3(x+1)+x.lnx+lnx]dx
=∫3(x+1)dx + ∫x.lnxdx+∫lnxdx
=(3x^2/2 + 3x + C1) +∫x.lnxdx + ∫lnxdx
=(3x^2/2+3x+C1)+1/2∫lnxdx^2 +∫lnxdx
using by part
=(3x^2/2 + 3x + C1) +1/2[x^2.lnx-∫x^2dlnx] +[ x.lnx-∫xdlnx]
=(3x^2/2 + 3x + C1) +1/2(x^2.lnx -∫xdx)+[x.lnx -∫dx](because dlnx/dx=1/x)
=(3/2)x^2 + 3x + (1/2)x^2.lnx - (1/4)x^2+ x.lnx -x + C
2008-01-16 18:04:51 補充:
排好些是:(5/4)x^2+ 2x+(x^2/2+x ).lnx+c
2008-01-16 18:06:31 補充:
(5/4)x^2+ 2x+(x^2/2+x ).lnx+c
Q2) by parts
dv = (x+1)dx
u = (lnx+3)
v = x^2/2+x
∫udv = uv- ∫vdu
= ............
你自己應該識計
收錄日期: 2021-04-11 16:32:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080115000051KK01063
檢視 Wayback Machine 備份