A. Maths

2008-01-14 2:05 am
證明sin²(θ -270゚)+cos²(90゚ + θ) + tan²(θ -360゚) = secθ

回答 (5)

2008-01-14 3:59 am
✔ 最佳答案
L.H.S = sin²(θ -270゚)+cos²(90゚ + θ) + tan²(θ -360゚)
=[-sin(270゚-θ)]2+[-sinθ]2+[-tan(360゚-θ)]2
=[-sin(180゚+90゚-θ)]2+sin2θ+[-tan(180゚+180゚-θ)]2
=[sin(90゚-θ)]2+sin2θ+[tan(180゚-θ)]2
=[cosθ]2+sin2θ+[-tanθ]2
=cos2θ+sin2θ+tan2θ
=1+tan2θ
=sec2θ
=R.H.S

圖片參考:http://hk.yimg.com/i/icon/16/3.gif

2008-01-15 1:57 am
ans:R.S.H
2008-01-14 2:43 am
我計左幾次都only計倒sec²θ 咋... show俾你睇下丫

sin²(θ -270゚)+cos²(90゚ + θ) + tan²(θ -360゚)
=[sin-(270゚ -θ)]² + [cos(90゚ + θ)]² + [tan-(360°-θ)]²
=[-sin(270゚ -θ)]² + (-sinθ)² + [-tan(360°-θ)]²
=cos²θ +sin²θ +tan²θ
=1+tan²θ
=1+(sec²θ-1)
=sec²θ

你check 下丫=]
2008-01-14 2:33 am
L.H.S = sin²(θ -270゚)+cos²(90゚ + θ) + tan²(θ -360゚)
=[-sin(270゚-θ)]2+[-sinθ]2+[-tan(360゚-θ)]2
=[-sin(180゚+90゚-θ)]2+sin2θ+[-tan(180゚+180゚-θ)]2
=[sin(90゚-θ)]2+sin2θ+[tan(180゚-θ)]2
=[cosθ]2+sin2θ+[-tanθ]2
=cos2θ+sin2θ+tan2θ
=1+tan2θ
=sec2θ
=R.H.S

2008-01-13 18:35:25 補充:
should R.H.S. be sec²θ ?

2008-01-24 13:07:36 補充:
copy me answer!
2008-01-14 2:10 am
∵sin²(θ -270゚)+cos²(90゚ + θ) + tan²(θ -360゚) = secθ
∴所以這是對的


收錄日期: 2021-04-23 21:51:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080113000051KK03093

檢視 Wayback Machine 備份