✔ 最佳答案
a)
BC:CA = 1:5
(→OC) = (a+5b) / 6
BD:DA = 3:3 = 1:1
(→OD) = (a+b) / 2
b)
a‧b
= |a| |b| cos(angleAOB)
= -9
(→OC)‧(→OA)
= [(a+5b) / 6]‧a
= [ |a| ^2 +5(a‧b)] / 6
= (36 - 45) / 6
= -3/2
|→OC| cos(angleCOA) = (-3/2) / 6 = -1/4
|→OC| sin(angleCOA) = OB sin(angleAOB) (5/6) = 5sqrt(3) / 4
thus, tan(angleCOA) = -5sqrt(3)
angleCOA = 96.59 degrees
Similar for angle DOA,
(→OD)‧(→OA)
= [(a+b) / 2]‧a
= [ |a| ^2 +(a‧b)] / 2
= (36 - 9) / 2
= 27/2
|→OD| cos(angleDCOA) = (27/2) / 6 = 9/4
|→OD| sin(angleDOA) = OB sin(angleAOB) (3/6) = 3sqrt(3) / 4
thus, tan(angleDOA) = sqrt(3) / 3
angleDOA = 30 degrees
Therefore,
angleCOD
= angleCOA - angleDOA
= 67 degrees (to the neareast degree)