a.maths

2008-01-12 5:51 am
a hemispherical bowl or radius 10 cm contains water to a depth of 'g' cm, the volume of the water is

1/3πg²(30-g) cm³ ( 可copy落word睇)

if the radius of the water surface is r cm ,express r in terms of g .

why the answer is (開方--->) √(g(20-g))?


thx!!!

回答 (1)

2008-01-12 6:48 am
✔ 最佳答案
1)
我們可考慮那個半球杯是由在y軸旋轉
(y-10)^2+x^2=100所做成
V=∫πx^2dy (from 0 to g)
=∫π(100-(y-10)^2)dy
=∫π(20y-y^2)dy
= π(10y^2-y^3/3) (from 0 to g)
=1/3πg²(30-g)


2)
(y-10)^2+x^2=100
now put y=g, x=r
we have
(g-1o)^2+r^2=100
r^2=100-(g^2-20g+100)
r^2=20g-g^2
r= √(g(20-g))

2008-01-12 00:39:23 補充:
因為球體是由圓形,在y軸或x軸,轉動而形成的。既然你說,那個半球體的半徑是10所以,那個圓形的中心,可以設在(0,10);於是乎,那個圓形的equation就是:(y-10)^2 x^2=100(因圖的general formula是:(x-x0)^2 (y-y0)^2=R^2 )

2008-01-12 17:11:29 補充:
因為題目指出,當水的高度為g時,水的半徑為r所以,只要我們將y=g, x=r代入那圓形的方程式裏,就可以得到r與g的關係


收錄日期: 2021-04-11 16:24:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080111000051KK03880

檢視 Wayback Machine 備份