Simplify the following expression

2008-01-11 2:03 am
Simplify the following expression

{[1-(1/n)]/n-(1+n)[1-(1/n)} x 1/[n-(1/n)]

高手可解答!
更新1:

{[1-(1/n)]/n-(1+n)[1-(1/n)]} x 1/[n-(1/n)]

更新2:

To 小路: Absolutely WRONG! The answer is n/(n+1) But I need steps

更新3:

To:小路 遲d我會將steps放上黎~你唔需要刪除答案 我會選你做最佳解答~

回答 (1)

2008-01-11 3:03 am
✔ 最佳答案
Q: Simplify the following expression.

{[1-(1/n)]/n - (1+n)[1-(1/n)]} x 1/[n-(1/n)]

Sol:

{[1-(1/n)]/n - (1+n)[1-(1/n)]} x 1/[n-(1/n)]

= {[(n-1)/n]/n - (1+n)[(n-1)/n]} x 1/[(n²-1)/n]

= [(n-1)/n² - (n²-1)/n] x n/(n²-1)

= [(n-1)/n² - (n^3-n)/n²] x n/(n²-1)

= (n-1-n^3+n)/n² x n/(n²-1)

= - (n^3-2n-1)/n² x n/(n²-1)

= - (n^3-2n-1)/[n(n²-1)]

= - [(n+1)(n²-n-1)]/[n(n+1)(n-1)]

= - (n²-n-1)/(n²-n) ( 你可以只做到這個步驟 )

= - 1 + 1/(n²-n)

Ans: - 1 + 1/(n²-n)

2008-01-14 05:54:40 補充:
correction, from this step:= (n-1-n^3+n)/n² x n/(n²-1)= - (n^3-2n+1)/n² x n/(n²-1)= - (n^3-2n+1)/[n(n²-1)]= - [(n-1)(n²+n-1)]/[n(n+1)(n-1)]= - (n²+n-1)/(n²+n)Ans: - (n²+n-1)/(n²+n)

2008-01-14 05:56:00 補充:
correction, from this step:= (n-1-n^3+n)/n² x n/(n²-1)= - (n^3-2n+1)/n² x n/(n²-1)= - (n^3-2n+1)/[n(n²-1)]= - [(n-1)(n²+n-1)]/[n(n+1)(n-1)]= - (n²+n-1)/(n²+n) ( 你可以只做到這個步驟 )= - 1 + 1/(n²+n)Ans: - 1 + 1/(n²+n)

2008-01-14 06:01:45 補充:
I am sorry, I still get the different answer from yours.I try to substitute if n = 2 to the questionit should be equal to - 5/6and substitute n = 2 to my answerthe result is - 5/6

2008-01-14 06:02:11 補充:
but, substitute n = 2 to your answerthe result is 2/3so, do you mind if check the question for me, please?
參考: 數學小頭腦


收錄日期: 2021-04-23 17:36:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080110000051KK02757

檢視 Wayback Machine 備份