好簡單的求多邊形邊數問題!!!!!!

2008-01-07 1:47 am
if an exterior angle of a regular n-sided polygon is less than its interior angle by 120度,find the value of n?

回答 (2)

2008-01-07 2:26 am
✔ 最佳答案
let x be the degree of interior angle
then exterior angle is 180-x
x-(180-x)=120
2x-180=120
x=150

also
x=180*(n-2)/n
150=(180n-360)/n
150n=180n-360
360=30n
n=12

so, n=12
參考: 自己
2008-01-07 2:27 am
[(n-2)180°]/n - 360°/n=120° (∠ sum of polygon)(ext.∠ of polygon)
180°n-360°-360°=120°n
60°n=720°
n=12

或者可以咁計:
Let an interior angle be y
then an exterior angle wil be y-120°
y+y-120°=180°(∠s on st. line)
2y=300°
y=150°

[(n-2)180°]/n = y(∠ sum of polygon)
180°n-360°=150°n
30°n=360°
n=12

ps.
(n-2)180° = sum of interior angles in a n-gon
[(n-2)180°]/n = each interior angles in a n-gon
360° = sum of exterior angles in a n-gon
360°/n = each exterior angles in a n-gon
參考: myself(:


收錄日期: 2021-04-13 14:54:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080106000051KK03155

檢視 Wayback Machine 備份