✔ 最佳答案
(a+b)^3 - 27(a-b)^3
= (a+b)^3 - [3(a-b)]^3
By the identity a^3 - b^3 = (a-b)(a^2 + ab + b^2)
(a+b)^3 - [3(a-b)]^3
= [(a+b) - 3(a-b)] {(a+b)^2 + (a+b)[3(a-b)] + [3(a-b)]^2}
= (a+b-3a+3b)(a^2 + 2ab + b^2 + 3a^2 - 3b^2 + 9a^2 - 18ab + 9b^2)
= (4b-2a)(13a^2 - 16ab + 7b^2)
= 2(2b-a)(13a^2 - 16ab + 7b^2)//