數學的難題?

2008-01-01 2:05 am
h^4-k^4/2hk(h+k)^2 / 2(h-k)^2/(h-k)^2-(h+k)^2

Hint: h^4 =(h^2)^2,k^4=(k^2)^2

回答 (2)

2008-01-10 2:37 pm
✔ 最佳答案
Q: (h^4-k^4)/[2hk(h+k)²] ÷ 2(h-k)²/[(h-k)²-(h+k)²]

Sol:

(h^4-k^4)/[2hk(h+k)²] ÷ 2(h-k)²/[(h-k)²-(h+k)²]

= (h²-k²)(h²+k²)/[2hk(h+k)²] × [(h-k)²-(h+k)²]/[2(h-k)²]

= (h²-k²)(h²+k²)/[2hk(h+k)²] × (h-k-h-k)(h-k+h+k)/[2(h-k)²]

= (h²-k²)(h²+k²)/[2hk(h+k)²] × (-2h)(2k)/[2(h-k)²]

= (-4hk)(h²-k²)(h²+k²)/[4hk(h+k)²(h-k)²]

= (-4hk)(h²-k²)(h²+k²)/[4hk(h²-k²)²]

= - (h²+k²)/(h²-k²)

= (k²+ h²)/(k²-h²)

Ans: (k²+ h²)/(k²-h²)
參考: 數學小頭腦
2008-01-01 2:27 am
ans: -(h^2-k^2)/(h-4)^2


收錄日期: 2021-04-13 14:50:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071231000051KK03173

檢視 Wayback Machine 備份