✔ 最佳答案
AB同CD相交個點叫F
In △ABC,
AB = AC (given)
∠BAC+∠ABC+∠ACB=180° (∠sum of △)
20°+∠ABC+∠ACB=180°
∠ABC+∠ACB=160°
∠ABC=∠ACB=80° (base ∠s, isos. △)
In △BFC,
∠DBC=∠FBC+∠DBF
80°=∠FBC+20°
∠FBC=60°
In △BCE,
∠EBC+∠ECB+∠BEC=180° (∠sum of △)
60°+80°+∠BEC=180°
∠BEC=40°
In △ACD,
∠DAC+∠DCA+∠ADC=180° (∠sum of △)
20°+30°+∠ADC=180°
∠ADC=130°
Let AB=AC=x
BC²=AB²+AC²-2AB∙AC cos∠BAC
x²+x²-2x∙x cos20°
2x²-2x²cos20°
2x²(1-cos20°)
BC=√[2x²(1-cos20°)]
≈0.3473x
BC/sin∠BEC=CE/sin∠CBE
CE=BC sin∠CBE/sin∠BEC
≈0.3473x sin60°/sin40°
≈0.4679x
AC/sin∠ADC=CD/sin∠DAC
CD=AC sin∠DAC /sin∠ADC
=x sin20°/sin130°
≈0.4465x
DE²=CD²+CE²-2CD∙CE cos ∠DCE
=0.4465x²+0.4679x²-2*0.4465x*0.4679x cos 30°
≈0.0564x²
DE ≈0.2376x
cos∠DEC=(DE²+CE²-CD²)/2CE∙DE
≈[0.0564x²+(0.4679x)²-(0.4465x)²]/2(0.4679x∙0.2376x)
≈(0.0564x²+0.2189x²-0.1993x²)/2*0.1112x²
≈0.076x²/0.2223x²
≈0.342
∠DEC=70°