✔ 最佳答案
1
We have
a+ar+ar^2+...=16
a^2+(ar)^2+(ar)^4+...=153 3/5
So
a/(1-r)=16...(1)
a^2/(1-r^2)=153 3/5...(2)
Sub (1) into (2)
16a/(1+r)=153 3/5
a/(1+r)=48/5
So
16(1-r)=48(1+r)/5
(-128/5)r=-32/5
r=0.25
a=16(0.25-1)=12
The fourth term of the sequence
=ar^3
=12*(1/64)
=3/16
2
T(n)=[3/(2x+1)]^n
a=T(1)=3/(2x+1)
r=3/(2x+1)
The sum to infinity in terms of x
=a/(1-r)
=[3/(2x+1)]/[1-3/(2x+1)]
=[3/(2x+1)]/[(2x-2)/(2x+1)]
=3/(2x-2)
=(3/2)[1/(x-1)]
(b)
Let
(3/2)[1/(x-1)]=22
1/(x-1)=44/3
44x-44=3
x=47/44
2007-12-17 17:44:18 補充:
For question 2absolute value of the common ration is less than 1That is-1<3/(2x+1)<1